Product Citations: 12

Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Natural killer (NK) cell cytotoxicity toward self-cells is restrained by the inhibitory HLA class I-binding receptors CD94/NKG2A and the killer cell immunoglobulin-like receptors (KIRs). CD94/NKG2A and KIRs are also essential for NK cell education, which is a dynamic functional maturation process where a constitutive binding of inhibitory receptors to cognate HLA class I molecules is required for NK cells to maintain their full cytotoxic capacity. Previously, we described autoantibodies to CD94/NKG2A in patients with systemic lupus erythematosus (SLE). In this study we analyzed sera from 191 patients with SLE, 119 patients with primary Sjögren's syndrome (pSS), 48 patients with systemic sclerosis (SSc), and 100 healthy donors (HD) for autoantibodies to eight different KIRs. Anti-KIR autoantibodies were identified in sera from 23.0% of patients with SLE, 10.9% of patients with pSS, 12.5% of patients with SSc, and 3.0% of HD. IgG from anti-KIR-positive SLE patients reduced the degranulation and cytotoxicity of NK cells toward K562 tumor cells. The presence of anti-KIR-autoantibodies reacting with >3 KIRs was associated with an increased disease activity (p < 0.0001), elevated serum levels of IFN-α (p < 0.0001), nephritis (p = 0.001), and the presence of anti-Sm (p = 0.007), and anti-RNP (p = 0.003) autoantibodies in serum. Together these findings suggest that anti-KIR autoantibodies may contribute to the reduced function of NK cells in SLE patients, and that a defective NK cell function may be a risk factor for the development of lupus nephritis.
Copyright © 2019 Segerberg, Lundtoft, Reid, Hjorton, Leonard, Nordmark, Carlsten and Hagberg.

  • Immunology and Microbiology

Human Dendritic Cells Mitigate NK-Cell Dysfunction Mediated by Nonselective JAK1/2 Blockade.

In Cancer Immunology Research on 1 January 2017 by Curran, S. A., Shyer, J. A., et al.

Janus kinase (JAK) inhibitors have achieved positive responses in myeloproliferative neoplasms, but at the expense of decreased natural killer (NK) cell numbers and compromised function. Selective JAK2 inhibition may also have a role in preventing and treating graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Although JAK inhibitors can impair monocyte-derived dendritic cell (moDC) activation and function and suppress effector T-cell responses, the effects on NK cells and the relevant mechanisms remain undefined. Using common γc cytokines and distinct human dendritic cell (DC) subtypes, we compared the effects of a JAK2-specific (TG101348) with a less selective JAK1/2 (ruxolitinib) inhibitor on NK-cell activation and function. Ruxolitinib treatment completely blocked IL2, IL15, and DC-mediated STAT5 phosphorylation, along with the capacity of NK cells to secrete IFNγ or lyse NK cell-sensitive targets. Only NK-cell proliferation stimulated by moDCs resisted ruxolitinib treatment. In contrast, TG101348 treatment of stimulated NK cells resulted in far less functional compromise. TG101348 completely inhibited only soluble IL15-mediated STAT5 phosphorylation, which Langerhans-type DCs (LCs), presenting membrane-bound IL15 in trans, could salvage. These results demonstrate that ruxolitinib's nonselective inhibition of JAK1/2 results in profound NK-cell dysfunction by blocking downstream pSTAT5, hence providing a persuasive rationale for the development of selective JAK2 inhibitors for immunotherapeutic applications. Cancer Immunol Res; 5(1); 52-60. ©2016 AACR.
©2016 American Association for Cancer Research.

  • Immunology and Microbiology

NK cell genotype and phenotype at diagnosis of acute lymphoblastic leukemia correlate with postinduction residual disease.

In Clinical Cancer Research on 1 December 2014 by Sullivan, E. M., Jeha, S., et al.

Not all natural killer (NK) cells are equally cytotoxic against leukemia because of differences in receptor gene content and surface expression. We correlated NK cell genotype and phenotype at diagnosis of childhood acute lymphoblastic leukemia (ALL) with minimal residual disease (MRD) after induction chemotherapy.
The NK cells and leukemia blasts of 244 patients were analyzed at diagnosis by killer-cell immunoglobulin-like receptor (KIR) typing and immunophenotyping. The results were correlated statistically with postinduction MRD status.
The odds of being MRD positive in patients with KIR telomeric (Tel)-A/B genotype were 2.85 times the odds in those with Tel-A/A genotype (P = 0.035). MRD-positive patients were more likely to have KIR2DL5A (P = 0.006) and expressed less activating receptor NKp46 and FASL on their NK cells (P = 0.0074 and P = 0.029, respectively). The odds of being MRD positive increased by 2.01-fold for every percentage increase in NK cells expressing KIR2DL1 in the presence of HLA-C2 ligand (P = 0.034). The quantity of granzyme B inhibitor PI-9 in the leukemia blasts was greater in patients who were MRD positive (P = 0.038). Collectively, five NK cell-related factors (Tel-B-associated KIR2DL5A, NKp46, FASL, granzyme B, and PI-9) are strongly associated with MRD positivity at the end of induction with 100% sensitivity and 80% specificity.
Our data support the hypothesis that NK cells with a strong effector phenotype in the setting of decreased leukemia resistance are associated with better leukemia control.
©2014 American Association for Cancer Research.

  • Cancer Research

Chronic lymphoproliferative disorders of natural killer cells (CLPD-NKs) and T-cell large granular lymphocytic leukemias (T-LGLs) are clonal lymphoproliferations arising from either natural killer cells or cytotoxic T lymphocytes (CTLs). We have investigated for distribution and functional significance of mutations in 50 CLPD-NKs and 120 T-LGL patients by direct sequencing, allele-specific PCR, and microarray analysis. STAT3 gene mutations are present in both T and NK diseases: approximately one-third of patients with each type of disorder convey these mutations. Mutations were found in exons 21 and 20, encoding the Src homology 2 domain. Patients with mutations are characterized by symptomatic disease (75%), history of multiple treatments, and a specific pattern of STAT3 activation and gene deregulation, including increased expression of genes activated by STAT3. Many of these features are also found in patients with wild-type STAT3, indicating that other mechanisms of STAT3 activation can be operative in these chronic lymphoproliferative disorders. Treatment with STAT3 inhibitors, both in wild-type and mutant cases, resulted in accelerated apoptosis. STAT3 mutations are frequent in large granular lymphocytes suggesting a similar molecular dysregulation in malignant chronic expansions of NK and CTL origin. STAT3 mutations may distinguish truly malignant lymphoproliferations involving T and NK cells from reactive expansions.

  • Cancer Research
  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb