Product Citations: 22

Central Role of Macrophages and Nucleic Acid Release in Myasthenia Gravis Thymus.

In Annals of Neurology on 1 April 2023 by Payet, C. A., You, A., et al.

Myasthenia gravis (MG) is a neuromuscular disease mediated by antibodies against the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG and is characterized by a type I interferon (IFN) signature linked to IFN-β. We investigated if AChR-MG was characterized by an IFN-I signature in the blood, and further investigated the chronic thymic IFN-I signature.
Serum levels of IFN-β and IFN-α subtypes, and mRNA expression for IFN-I subtypes and IFN-stimulated genes in peripheral mononuclear blood cells (PBMCs) were analyzed. The contribution of endogenous nucleic acids in thymic expression of IFN-I subtypes was investigated in human thymic epithelial cell cultures and the mouse thymus. By immunohistochemistry, thymic CD68+ and CD163+ macrophages were analyzed in AChR-MG. To investigate the impact of a decrease in thymic macrophages, mice were treated with an anti-CSF1R antibody.
No IFN-I signature was observed in the periphery emphasizing that the IFN-I signature is restricted to the MG thymus. Molecules mimicking endogenous dsDNA signalization (Poly(dA:dT) and 2'3'-cGAMP), or dexamethasone-induced necrotic thymocytes increased IFN-β and α-AChR expression by thymic epithelial cells, and in the mouse thymus. A significant decrease in thymic macrophages was demonstrated in AChR-MG. In mice, a decrease in thymic macrophages led to an increase of necrotic thymocytes associated with IFN-β and α-AChR expression.
These results suggest that the decrease of thymic macrophages in AChR-MG impairs the elimination of apoptotic thymocytes favoring the release of endogenous nucleic acids from necrotic thymocytes. In this inflammatory context, thymic epithelial cells may overexpress IFN-β, which specifically induces α-AChR, resulting in self-sensitization and thymic changes leading to AChR-MG. ANN NEUROL 2023;93:643-654.
© 2022 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

  • Neuroscience

The obesity epidemic significantly contributes to overall morbidity and mortality. Bariatric surgery is the gold standard treatment for obesity and metabolic dysfunction, yet the mechanisms by which it exerts metabolic benefit remain unclear. Here, we demonstrate a model of vertical sleeve gastrectomy (VSG) in nonhuman primates (NHP) that mimics the complexity and outcomes in humans. We also show that VSG confers weight loss and durable metabolic benefit, where equivalent caloric intake in shams resulted in significant weight gain following surgery. Furthermore, we show that VSG is associated with early, weight-independent increases in bile acids, short-chain fatty acids, and reduced visceral adipose tissue (VAT) inflammation with a polarization of VAT-resident immunocytes toward highly regulatory myeloid cells and Tregs. These data demonstrate that this strongly translational NHP model can be used to interrogate factors driving successful intervention to unravel the interplay between physiologic systems and improve therapies for obesity and metabolic syndrome.© 2021 The Author(s).

  • Biochemistry and Molecular biology

DNA vaccines delivered with electroporation (EP) have shown promising results in preclinical models and are evaluated in clinical trials. In this study, we aim to characterize early mechanisms occurring in the skin after intradermal injection and EP of the auxoGTUmultiSIV DNA vaccine in nonhuman primates. First, we show that EP acts as an adjuvant by enhancing local inflammation, notably via granulocytes, monocytes/macrophages, and CD1aint-expressing cell recruitment. EP also induced Langerhans cell maturation, illustrated by CD86, CD83, and HLA-DR upregulation and their migration out of the epidermis. Second, we demonstrate the crucial role of the DNA vaccine in soluble factors release, such as MCP-1 or IL-15. Transcriptomic analysis showed that EP played a major role in gene expression changes postvaccination. However, the DNA vaccine is required to strongly upregulate several genes involved in inflammatory responses (e.g., Saa4), cell migration (e.g., Ccl3, Ccl5, or Cxcl10), APC activation (e.g., Cd86), and IFN-inducible genes (e.g., Ifit3, Ifit5, Irf7, Isg15, orMx1), illustrating an antiviral response signature. Also, AIM-2, a cytosolic DNA sensor, appeared to be strongly upregulated only in the presence of the DNA vaccine and trends to positively correlate with several IFN-inducible genes, suggesting the potential role of AIM-2 in vaccine sensing and the subsequent innate response activation leading to strong adaptive T cell responses. Overall, these results demonstrate that a combined stimulation of the immune response, in which EP and the auxoGTUmultiSIV vaccine triggered different components of the innate immunity, led to strong and persistent cellular recall responses.
Copyright © 2020 by The American Association of Immunologists, Inc.

  • Genetics
  • Immunology and Microbiology

HIV-1 Envelope Overcomes NLRP3-Mediated Inhibition of F-Actin Polymerization for Viral Entry.

In Cell Reports on 24 September 2019 by Paoletti, A., Allouch, A., et al.

Purinergic receptors and nucleotide-binding domain leucine-rich repeat containing (NLR) proteins have been shown to control viral infection. Here, we show that the NLR family member NLRP3 and the purinergic receptor P2Y2 constitutively interact and regulate susceptibility to HIV-1 infection. We found that NLRP3 acts as an inhibitory factor of viral entry that represses F-actin remodeling. The binding of the HIV-1 envelope to its host cell receptors (CD4, CXCR4, and/or CCR5) overcomes this restriction by stimulating P2Y2. Once activated, P2Y2 enhances its interaction with NLRP3 and stimulates the recruitment of the E3 ubiquitin ligase CBL to NLRP3, ultimately leading to NLRP3 degradation. NLRP3 degradation is permissive for PYK2 phosphorylation (PYK2Y402∗) and subsequent F-actin polymerization, which is required for the entry of HIV-1 into host cells. Taken together, our results uncover a mechanism by which HIV-1 overcomes NLRP3 restriction that appears essential for the accomplishment of the early steps of HIV-1 entry.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cell Biology
  • Immunology and Microbiology

Impact of systemic therapy on circulating leukocyte populations in patients with metastatic breast cancer.

In Scientific Reports on 17 September 2019 by Larsson, A. M., Roxå, A., et al.

Tumors affect the immune system, locally and systemically. The frequencies of specific circulating immune cell populations correlate with disease progression as well as prognosis of the patients. Although largely neglected, conventional antitumoral therapies often possess immunomodulatory properties and affect the levels of specific immune cell populations. Most information, however, derive from animal or in vitro studies. As this could impact prognosis as well as response to therapy, further studies of the effects of treatment on circulating immune cells in patients are warranted. In this pilot study, we evaluated a wide panel of circulating immune cells over time (up to six months) in ten patients with metastatic breast cancer receiving standard antitumoral regimens. Overall, endocrine therapy tends to enrich for natural killer (NK) and natural killer T (NKT) cells in the circulation, whereas both chemotherapy and endocrine therapy reduce the levels of circulating monocytic myeloid-derived suppressor cells (Mo-MDSCs). This indicates that the systemic immunosuppressive profile observed in patients tends to revert over the course of systemic therapy and holds promise for future combination treatment with standard antitumoral agents and immunotherapy.

  • Cancer Research
View this product on CiteAb