Product Citations: 6

Tyro3 promotes the maturation of glutamatergic synapses.

In Frontiers in Neuroscience on 27 February 2024 by Miao, S., Fourgeaud, L., et al.

The receptor tyrosine kinase Tyro3 is abundantly expressed in neurons of the neocortex, hippocampus, and striatum, but its role in these cells is unknown. We found that neuronal expression of this receptor was markedly up-regulated in the postnatal mouse neocortex immediately prior to the final development of glutamatergic synapses. In the absence of Tyro3, cortical and hippocampal synapses never completed end-stage differentiation and remained electrophysiologically and ultrastructurally immature. Tyro3-/- cortical neurons also exhibited diminished plasma membrane expression of the GluA2 subunits of AMPA-type glutamate receptors, which are essential to mature synaptic function. Correspondingly, GluA2 membrane insertion in wild-type neurons was stimulated by Gas6, a Tyro3 ligand widely expressed in the postnatal brain. Behaviorally, Tyro3-/- mice displayed learning enhancements in spatial recognition and fear-conditioning assays. Together, these results demonstrate that Tyro3 promotes the functional maturation of glutamatergic synapses by driving plasma membrane translocation of GluA2 AMPA receptor subunits.
Copyright © 2024 Miao, Fourgeaud, Burrola, Stern, Zhang, Happonen, Novak, Gage and Lemke.

  • Neuroscience

Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer's disease models.

In The EMBO Journal on 4 October 2023 by Rueda-Carrasco, J., Sokolova, D., et al.

Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aβ oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aβ oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aβ-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.
© 2023 The Authors. Published under the terms of the CC BY 4.0 license.

  • Neuroscience

MARTX toxin of Vibrio vulnificus induces RBC phosphatidylserine exposure that can contribute to thrombosis.

In Nature Communications on 17 August 2022 by Chung, H. Y., Bian, Y., et al.

V. vulnificus-infected patients suffer from hemolytic anemia and circulatory lesions, often accompanied by venous thrombosis. However, the pathophysiological mechanism of venous thrombosis associated with V. vulnificus infection remains largely unknown. Herein, V. vulnificus infection at the sub-hemolytic level induced shape change of human red blood cells (RBCs) accompanied by phosphatidylserine exposure, and microvesicle generation, leading to the procoagulant activation of RBCs and ultimately, acquisition of prothrombotic activity. Of note, V. vulnificus exposed to RBCs substantially upregulated the rtxA gene encoding multifunctional autoprocessing repeats-in-toxin (MARTX) toxin. Mutant studies showed that V. vulnificus-induced RBC procoagulant activity was due to the pore forming region of the MARTX toxin causing intracellular Ca2+ influx in RBCs. In a rat venous thrombosis model triggered by tissue factor and stasis, the V. vulnificus wild type increased thrombosis while the ΔrtxA mutant failed to increase thrombosis, confirming that V. vulnificus induces thrombosis through the procoagulant activation of RBCs via the mediation of the MARTX toxin.
© 2022. The Author(s).

Phosphatidylserine exposure promotes increased adhesion in Dictyostelium Copine A mutants.

In PLoS ONE on 28 May 2021 by Ide, A. D., Wight, E. M., et al.

The phospholipid phosphatidylserine (PS) is a key signaling molecule and binding partner for many intracellular proteins. PS is normally found on the inner surface of the cell membrane, but PS can be flipped to the outer surface in a process called PS exposure. PS exposure is important in many cell functions, yet the mechanisms that control PS exposure have not been extensively studied. Copines (Cpn), found in most eukaryotic organisms, make up a family of calcium-dependent phospholipid binding proteins. In Dictyostelium, which has six copine genes, CpnA strongly binds to PS and translocates from the cytosol to the plasma membrane in response to a rise in calcium. Cells lacking the cpnA gene (cpnA-) have defects in adhesion, chemotaxis, membrane trafficking, and cytokinesis. In this study we used both flow cytometry and fluorescent microscopy to show that cpnA- cells have increased adhesion to beads and bacteria and that the increased adhesion was not due to changes in the actin cytoskeleton or cell surface proteins. We found that cpnA- cells bound higher amounts of Annexin V, a PS binding protein, than parental cells and showed that unlabeled Annexin V reduced the increased cell adhesion property of cpnA- cells. We also found that cpnA- cells were more sensitive to Polybia-MP1, which binds to external PS and induces cell lysis. Overall, this suggests that cpnA- cells have increased PS exposure and this property contributes to the increased cell adhesion of cpnA- cells. We conclude that CpnA has a role in the regulation of plasma membrane lipid composition and may act as a negative regulator of PS exposure.

The Cell Culture Environment Regulates the Transcription Factor MafB in BV-2 Microglia.

In Matters on 11 May 2021 by Miller-Rhodes, P. & Gelbard, H. A.

Microglia experience dramatic molecular and functional changes when transferred from the central nervous system (CNS) to a cell culture environment. Investigators largely attribute these findings to the loss of CNS-specific microenvironmental cues that dictate the gene-regulatory networks specified by master regulator transcription factors such as V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB). MafB regulates macrophage differentiation and activation by activating or repressing target genes critical to these processes. Here, we show that basal MafB levels in the BV-2 microglial cell line depend on the availability of lipids in the cell culture environment. Depletion of lipids, either by serum deprivation or the use of lipid-depleted serum, reduced MafB protein levels in BV-2 cells. Using live imaging, we also observed the engulfment of apoptotic BV-2 cell debris by neighboring BV-2 cells, highlighting an additional potential source of lipids in the cell culture environment. This observation was supported by experiments showing reduced MafB protein levels in BV-2 cells cultured with various phagocytosis inhibitors (cytochalasin D, annexin V) and reduced BV-2 cell phagocytic activity with serum deprivation. In aggregate, our data suggest that serum exposure regulates the transcription factor MafB in BV-2 cells through direct and indirect mechanisms.

  • WB
  • Biochemistry and Molecular biology
  • Neuroscience
View this product on CiteAb