Product Citations: 21

Development and analysis of scaffold-free adipose spheroids.

In Adipocyte on 1 December 2024 by Liszewski, J. N., Klingelhutz, A. J., et al.

Adipose tissue plays a crucial role in metabolic syndrome, autoimmune diseases, and many cancers. Because of adipose's role in so many aspects of human health, there is a critical need for in vitro models that replicate adipose architecture and function. Traditional monolayer models, despite their convenience, are limited, showing heterogeneity and functional differences compared to 3D models. While monolayer cultures struggle with detachment and inefficient differentiation, healthy adipocytes in 3D culture accumulate large lipid droplets, secrete adiponectin, and produce low levels of inflammatory cytokines. The shift from monolayer models to more complex 3D models aims to better replicate the physiology of healthy adipose tissue in culture. This study introduces a simple and accessible protocol for generating adipose organoids using a scaffold-free spheroid model. The method, utilizing either 96-well spheroid plates or agarose micromolds, demonstrates increased throughput, uniformity, and ease of handling compared to previous techniques. This protocol allows for diverse applications, including drug testing, toxin screening, tissue engineering, and co-culturing. The choice between the two methods depends on the experimental goals, with the 96-well plate providing individualized control and the micromold offering scale advantages. The outlined protocol covers isolation, expansion, and characterization of stromal vascular fraction cells, followed by detailed steps for spheroid formation and optional downstream analyses.

Hypermethylation of the FOXP3 gene regulates Tregs immunodysregulation in chronic idiopathic thrombocytopenic purpura.

In Allergologia et Immunopathologia on 6 July 2024 by Wang, Z., Lang, T., et al.

Chronic idiopathic thrombocytopenic purpura (ITP) is an autoimmune disease characterized by a breakdown of immune tolerance; in ITP, the body's immune system mistakenly attacks and destroys platelets. This study aims to investigate the role and underlying mechanisms of FOXP3 in chronic ITP.
Flow cytometry was used to detect the proportion of CD4+CD25+FOXP3+ regulatory T cells (Tregs) in CD4+CD25+ T lymphocytes from 20 patients with chronic ITP (CITP), 20 acute ITP (AITP) controls, and 20 healthy individuals.CD4+CD25+ Treg cells were isolated from peripheral blood of patients with CITP using magnetic beads and then treated with phosphate-buffered saline solution or decitabine (a methylation inhibitor) for 48 h. The levels of interleukin-2 (IL-2), IL-10, and transforming growth factor-beta1 (TGF-β1) in the plasma and CD4+CD25+ Treg cells were assessed by Enzyme-linked-immunosorbent serologic assay and quantitative real-time polymerase chain reaction (qRT-PCR). FOXP3 level was measured by qRT-PCR and Western blot analysis. Methylation-specific PCR (MS-PCR) was adopted to detect the status of FOXP3 methylation.
The number of Treg cells and the contents of IL-2, IL-10, and TGF-β1 decreased in patients with CITP, compared to the AITP control group and normal group. FOXP3 expression was reduced and FOXP3 methylation increased in patients with CITP, compared to the AITP control group and normal group. Hypermethylation of FOXP3 promoter led to decrease in FOXP3 level in Treg cells. Inhibition of FOXP3 promoter hypermethylation promoted the secretion of IL-2, IL-10, and TGF-β1 in Treg cells.
The number of Treg cells in CITP patients decreased, and the hypermethylation of FOXP3 promoter led to reduction of its expression in Treg cells, thus affecting the immune functioning of Treg cells.

  • Homo sapiens (Human)
  • Immunology and Microbiology

FUN14 domain‑containing 1 (FUNDC1) is a receptor that has been previously reported to activate hypoxia‑induced mitophagy. However, the potential role of FUNDC1 in the pathophysiology of dental pulp diseases remains unknown. Therefore, present study first collected tissue specimens from patients with pulpitis and from healthy individuals. The results of reverse transcription‑quantitative PCR and immunohistochemical staining revealed markedly increased FUNDC1 and hypoxia‑inducible factor‑1α expression in pulpitis tissue specimens compared with those from healthy individuals. To provide a theoretical basis for the study of the occurrence, development and reparative mechanisms in the dental pulp after tissue injury, the present study then investigated the role of hypoxia‑induced mitophagy in the regulation of proliferation, migration and odontoblastic differentiation in human dental pulp cells (HDPCs), in addition, to the possible involvement of FUNDC1. The surface markers and multipotent differentiation capabilities of HDPCs were performed by flow cytometry (surface markers), alizarin red (osteogenic capabilities), alcian blue (chondrogenic capabilities) and oil red O (adipogenic capabilities). Following culture under hypoxia conditions (1% O2) for varying time periods, the proliferation, migration and odontoblastic differentiation of HDPCs were measured using Cell Counting Kit‑8, wound healing and Transwell migration assays, alkaline phosphatase staining and activity tests and western blotting (runt‑related transcription factor 2, collagen I, osterix and osteopontin), respectively. Immunofluorescence and western blotting were performed to measure the expression levels of hypoxia‑inducible factor‑1α, pro‑fission dynamin‑related protein 1, mitochondria‑related proteins translocase of inner mitochondrial membrane 23 and translocase of outer mitochondrial membrane 20, in addition to those of autophagy markers (p62, LC3II, Beclin‑1 and autophagy‑related 5). Transmission electron microscopy was also used to image the autophagosomes and mitochondrial morphology. In addition, to study the functional role of FUNDC1, its expression was silenced by liposome‑mediated transfection with small interfering RNA into HDPCs. Compared with those in HDPCs cultured under normoxic conditions (21% O2), the ability of autophagy in HDPCs cultured under hypoxic conditions for 18 h was markedly increased, whilst the proliferation, migration and odontoblastic differentiation were also enhanced. Increased numbers of autophagosomes could also be observed in the hypoxic group. However, FUNDC1 knockdown in HDPCs reversed the aforementioned effects. Overall, data from the present study suggest that hypoxia can promote the proliferation, migration and odontoblastic differentiation of HDPCs, where the underlying mechanism may be associated with the activation of mitophagy downstream of FUNDC1.

  • Homo sapiens (Human)

LIGHT (TNFSF14) enhances osteogenesis of human bone marrow-derived mesenchymal stem cells.

In PLoS ONE on 20 February 2021 by Heo, S. K., Choi, Y., et al.

Osteoporosis is a progressive systemic skeletal disease associated with decreased bone mineral density and deterioration of bone quality, and it affects millions of people worldwide. Currently, it is treated mainly using antiresorptive and osteoanabolic agents. However, these drugs have severe adverse effects. Cell replacement therapy using mesenchymal stem cells (MSCs) could serve as a treatment strategy for osteoporosis in the future. LIGHT (HVEM-L, TNFSF14, or CD258) is a member of the tumor necrosis factor superfamily. However, the effect of recombinant LIGHT (rhLIGHT) on osteogenesis in human bone marrow-derived MSCs (hBM-MSCs) is unknown. Therefore, we monitored the effects of LIGHT on osteogenesis of hBM-MSCs. Lymphotoxin-β receptor (LTβR), which is a LIGHT receptor, was constitutively expressed on the surface of hBM-MSCs. After rhLIGHT treatment, calcium and phosphate deposition in hBM-MSCs, stained by Alizarin red and von Kossa, respectively, significantly increased. We performed quantitative real-time polymerase chain reaction to examine the expressions of osteoprogenitor markers (RUNX2/CBFA1 and collagen I alpha 1) and osteoblast markers (alkaline phosphatase, osterix/Sp7, and osteocalcin) and immunoblotting to assess the underlying biological mechanisms following rhLIGHT treatment. We found that rhLIGHT treatment enhanced von Kossa- and Alizarin red-positive hBM-MSCs and induced the expression of diverse differentiation markers of osteogenesis in a dose-dependent manner. WNT/β-catenin pathway activation strongly mediated rhLIGHT-induced osteogenesis of hBM-MSCs, accelerating the differentiation of hBM-MSCs into osteocytes. In conclusion, the interaction between LIGHT and LTβR enhances osteogenesis of hBM-MSCs. Therefore, LIGHT might play an important role in stem cell therapy.

  • WB
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

Regulatory T cells enhance stem-like characteristics of hepatocellular carcinoma cells through Wnt/β-catenin pathway

Preprint on Research Square on 23 November 2020 by Liu, C., Pan, Y., et al.

h4>Background: /h4> Tumor initiating cells (TICs) were confirmed to drive the therapeutic resistance of hepatocellular carcinoma (HCC), but the mechanism by which tumor microenvironment maintains the HCC stemness is not fully understood. This study aims to investigate the effect of regulatory T cells (Tregs) on the TICs characteristics of HCC. h4>Methods: /h4> Immunocytochemistry, flow cytometry, real-time PCR, western blot, in vitro sphere-formation, and in vivo tumorigenesis assay were used to detect HCC TIC characteristics. Additionally, the association between FoxP3 expression, Wnt/β-catenin pathway activation, and HCC stemness were analyzed by forced expression or inhibition of FoxP3. h4>Results: /h4>: It was showed Tregs enhanced the stemness of HCC cells by upregulation of TIC-related markers CD133, Oct3/4, Sox2, c-Myc, Klf4, Nanog, CD13, EpCAM, and induction of epithelial to mesenchymal transition (EMT), increase of TICs ratio, as well as promotion of tumorigenic ability. Moreover, β-catenin and c-Myc were upregulated in HCC cells when co-cultured with Tregs. After Wnt/β-catenin pathway inhibition, HCC stemness was also inhibited. In addition, Tregs-derived exosomes played the same role as Tregs in enhancing HCC TIC properties, and exosome inhibition led to decreased TIC ratio as well as TIC markers expression. Furthermore, Tregs-derived exosomes down-regulate FoxP3 and GSK3β of HCC cells. Forced expression of FoxP3 resulted in increased GSK3β, decreased β-catenin and TIC ratio of HCC. In contrast, FoxP3 interference reduced GSK3β, increased β-catenin and TIC ratio. h4>Conclusions: /h4> This study, for the first time, demonstrated Tregs enhanced HCC stemness through Wnt//β-catenin pathway by down-regulating FoxP3.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb