Product Citations: 6

Role of affinity in plasma cell development in the germinal center light zone.

In The Journal of Experimental Medicine on 1 January 2024 by ElTanbouly, M., Ramos, V., et al.

Protective immune responses to many pathogens depend on the development of high-affinity antibody-producing plasma cells (PC) in germinal centers (GCs). Transgenic models suggest that there is a stringent affinity-based barrier to PC development. Whether a similar high-affinity barrier regulates PC development under physiologic circumstances and the nature of the PC fate decision has not been defined precisely. Here, we use a fate-mapping approach to examine the relationship between GC B cells selected to undergo additional rounds of affinity maturation, GC pre-PC, and PC. The data show that initial PC selection overlaps with GC B cell selection, but that the PC compartment accumulates a less diverse and higher affinity collection of antibodies over time. Thus, whereas the GC continues to diversify over time, affinity-based pre-PC selection sieves the GC to enable the accumulation of a more restricted group of high-affinity antibody-secreting PC.
© 2023 ElTanbouly et al.

  • FC/FACS

Spontaneous Osteoclastogenesis, a risk factor for bone metastasis in advanced luminal A-type breast cancer patients.

In Frontiers in Oncology on 10 March 2023 by Fernandez Vallone, V., Borzone, F. R., et al.

Osteolytic bone metastasis in advanced breast cancer stages are a major complication for patient´s quality life and a sign of low survival prognosis. Permissive microenvironments which allow cancer cell secondary homing and later proliferation are fundamental for metastatic processes. The causes and mechanisms behind bone metastasis in breast cancer patients are still an unsolved puzzle. Therefore, in this work we contribute to describe bone marrow pre-metastatic niche in advanced breast cancer patients.
We show an increase in osteoclasts precursors with a concomitant imbalance towards spontaneous osteoclastogenesis which can be evidenced at bone marrow and peripheral levels. Pro-osteoclastogenic factors RANKL and CCL-2 may contribute to bone resorption signature observed in bone marrow. Meanwhile, expression levels of specific microRNAs in primary breast tumors may already indicate a pro-osteoclastogenic scenario prior to bone metastasis.
The discovery of prognostic biomarkers and novel therapeutic targets linked to bone metastasis initiation and development are a promising perspective for preventive treatments and metastasis management in advanced breast cancer patients.
Copyright © 2023 Fernández Vallone, Borzone, Martinez, Giorello, Choi, Dimase, Feldman, Bordenave, Chudzinski-Tavassi, Batagelj and Chasseing.

  • FC/FACS
  • Cancer Research

Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, β-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.

  • FC/FACS
  • Cancer Research
  • Cell Biology

Despite widespread use of antiretroviral therapy (ART), HIV remains a major public health issue. Even with effective ART many infected individuals still suffer from the constellation of neurological symptoms now known as neuroHIV. These symptoms can be exacerbated by substance abuse, a common comorbidity among HIV-infected individuals. The mechanism(s) by which different types of drugs impact neuroHIV remains unclear, but all drugs of abuse increase central nervous system (CNS) dopamine and elevated dopamine increases HIV infection and inflammation in human myeloid cells including macrophages and microglia, the primary targets for HIV in the brain. Thus, drug-induced increases in CNS dopamine may be a common mechanism by which distinct addictive substances alter neuroHIV. Myeloid cells are generally infected by HIV strains that use the chemokine receptor CCR5 as a co-receptor, and our data indicate that in a subset of individuals, drug-induced levels of dopamine could interfere with the effectiveness of the CCR5 inhibitor Maraviroc. CCR5 can adopt distinct conformations that differentially regulate the efficiency of HIV entry and subsequent replication and using qPCR, flow cytometry, Western blotting and high content fluorescent imaging, we show that dopamine alters the expression of specific CCR5 conformations of CCR5 on the surface of human macrophages. These changes are not affected by association with lipid rafts, but do correlate with dopamine receptor gene expression levels, specifically higher levels of D1-like dopamine receptors. These data also demonstrate that dopamine increases HIV replication and alters CCR5 conformations in human microglia similarly to macrophages. These data support the importance of dopamine in the development of neuroHIV and indicate that dopamine signaling pathways should be examined as a target in antiretroviral therapies specifically tailored to HIV-infected drug abusers. Further, these studies show the potential immunomodulatory role of dopamine, suggesting changes in this neurotransmitter may also affect the progression of other diseases.
Copyright © 2021 Matt, Nickoloff-Bybel, Rong, Runner, Johnson, O’Connor, Haddad and Gaskill.

  • FC/FACS
  • Muntiacus muntjak (Indian muntjac)
  • Immunology and Microbiology

Chronic stress physically spares but functionally impairs innate-like invariant T cells.

In Cell Reports on 13 April 2021 by Rudak, P. T., Choi, J., et al.

The deleterious effects of psychological stress on mainstream T lymphocytes are well documented. However, how stress impacts innate-like T cells is unclear. We report that long-term stress surprisingly abrogates both T helper 1 (TH1)- and TH2-type responses orchestrated by invariant natural killer T (iNKT) cells. This is not due to iNKT cell death because these cells are unusually refractory to stress-inflicted apoptosis. Activated iNKT cells in stressed mice exhibit a "split" inflammatory signature and trigger sudden serum interleukin-10 (IL-10), IL-23, and IL-27 spikes. iNKT cell dysregulation is mediated by cell-autonomous glucocorticoid receptor signaling and corrected upon habituation to predictable stressors. Importantly, under stress, iNKT cells fail to potentiate cytotoxicity against lymphoma or to reduce the burden of metastatic melanoma. Finally, stress physically spares mouse mucosa-associated invariant T (MAIT) cells but hinders their TH1-/TH2-type responses. The above findings are corroborated in human peripheral blood and hepatic iNKT/MAIT cell cultures. Our work uncovers a mechanism of stress-induced immunosuppression.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
View this product on CiteAb