Product Citations: 14

Crosstalk between microbiome, regulatory T cells and HCA2 orchestrates the inflammatory response in a murine psoriasis model.

In Frontiers in Immunology on 10 March 2023 by Schwarz, A., Philippsen, R., et al.

The organ-specific microbiome plays a crucial role in tissue homeostasis, among other things by inducing regulatory T cells (Treg). This applies also to the skin and in this setting short chain fatty acids (SCFA) are relevant. It was demonstrated that topical application of SCFA controls the inflammatory response in the psoriasis-like imiquimod (IMQ)-induced murine skin inflammation model. Since SCFA signal via HCA2, a G-protein coupled receptor, and HCA2 expression is reduced in human lesional psoriatic skin, we studied the effect of HCA2 in this model. HCA2 knock-out (HCA2-KO) mice reacted to IMQ with stronger inflammation, presumably due to an impaired function of Treg. Surprisingly, injection of Treg from HCA2-KO mice even enhanced the IMQ reaction, suggesting that in the absence of HCA2 Treg switch from a suppressive into a proinflammatory type. HCA2-KO mice differed in the composition of the skin microbiome from wild type mice. Co-housing reversed the exaggerated response to IMQ and prevented the alteration of Treg, implying that the microbiome dictates the outcome of the inflammatory reaction. The switch of Treg into a proinflammatory type in HCA2-KO mice could be a downstream phenomenon. This opens the opportunity to reduce the inflammatory tendency in psoriasis by altering the skin microbiome.
Copyright © 2023 Schwarz, Philippsen, Piticchio, Hartmann, Häsler, Rose-John and Schwarz.

  • FC/FACS
  • Cricetulus migratorius (Armenian hamster)
  • Immunology and Microbiology

Immunoregulatory role of acid sphingomyelinase in allergic asthma.

In Immunology on 1 April 2019 by Sopel, N., Kölle, J., et al.

Acid sphingomyelinase (ASM) is one of the enzymes that catalyzes the breakdown of sphingomyelin to ceramide and phosphorylcholine. In this study, we aimed at elucidating the role of ASM in allergic asthma. We used an ovalbumin-induced murine model of asthma where we compared wild-type and ASM-deficient mice. In wild-type mice, secretory ASM activity in the bronchoalveolar lavage fluid was increased in the acute ovalbumin model, but not in a tolerogenic model. Furthermore, in the absence of ASM, the serum IgE level was reduced, compared with wild-type mice, while an accumulation of interstitial macrophages and foreign antigen-induced regulatory T cells along with exhausted CD4+ PD1+ T cells was observed in the lungs of ASM-/- mice. In conclusion, in the absence of ASM, we observed an accumulation of immunosuppressive antigen-induced regulatory T cells expressing Foxp3 and CTLA4 in the lung as well as multinucleated interstitial macrophages and exhausted CD4+ PD1+ T cells associated with inhibition of serum IgE in asthma.
© 2018 John Wiley & Sons Ltd.

  • Immunology and Microbiology

Dendritic cells (DCs) are professional antigen-presenting cells that are pivotal in the generation and sustainability of antitumor immune responses. Whole tumor cell lysates (TCLs) have been used as sources of tumor antigens for the development of DC vaccines. However, the clinical outcomes of the use of TCL-based DC vaccines have so far been unsatisfactory because of the weak immunogenicity of tumor cells. To improve the efficacy of TCL-based DC vaccines, viruses have been used to enhance the immunity of TCLs and to further enhance the antigen delivery and antigen-presenting ability of DCs. The aim of the present study was to improve the antigen-presenting ability of DCs and to use them to effectively activate T lymphocytes. The present study demonstrated that DCs loaded with the lysate of Newcastle Disease Virus (NDV)-infected tumor cells (NDV-TCL) have increased levels of cluster of differentiation 80 (CD80), CD86, CD83 and human leukocyte antigen-antigen D-associated expression, compared with those loaded with TCL alone. The DCs loaded with the NDV-TCL promoted T-cell proliferation and antitumor cytokine secretion from T cells. These results indicated that loading DCs with NDV-TCL could enhance the antigen-presenting ability of the DCs. On the basis of the results of the present study, we hypothesize that this method of loading DCs with NDV-TCL can be used to develop novel DC vaccines for tumor immunotherapy in the future.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Polymorphisms of the murine mitochondrial ND4, CYTB and COX3 genes impact hematopoiesis during aging.

In Oncotarget on 15 November 2016 by Kretzschmar, C., Roolf, C., et al.

During aging, mitochondrial DNA (mtDNA) can accumulate mutations leading to increasing levels of reactive oxygen species (ROS). Increased ROS were described to activate formerly quiescent hematopoietic stem cells (HSC). Mutations in mtDNA were shown to enhance the risk for myelodysplastic syndrome and leukemia. However, the complex relationship between mtDNA variations, ROS and aging of the hematopoietic system is not fully understood.Herein, three mouse strains with mtDNA polymorphisms in genes of respiratory chain complexes I (ND4), III (CYTB) and IV (COX3) were compared to a reference strain during aging. Analysis focused on ROS and ATP levels, bone marrow composition and blood counts. Additionally, hematopoietic restoration capacity following cytotoxic stress was tested.Mice with polymorphisms in ND4 and CYTB gene had significantly decreasing ROS levels in bone marrow cells during aging, without effecting ATP levels. In addition, the frequency of stem and progenitor cells increased during aging but the amount of lymphocytes in the peripheral blood decreased during aging.In summary, the presence of mtDNA polymorphisms affecting the respiratory chain complexes I, III and IV was associated with altered ROS levels as well as changes in BM and peripheral blood composition during aging.

  • Mus musculus (House mouse)
  • Cell Biology

Polymorphism in Murine mtATP8 Gene Correlates with Decreased Reactive Oxygen Species in Aging Hematopoietic Cells.

In In Vivo (Athens, Greece) on 12 November 2016 by Roolf, C., Kretzschmar, C., et al.

Mitochondrial DNA (mtDNA) encodes for the respiratory chain proteins. Genetic alterations in mtDNA have been described during aging and linked to impaired hematopoiesis.
We investigated two novel conplastic mouse strains harboring a mitochondrial nt7778 G/T polymorphism leading to an amino acid exchange in respiratory chain complex V. Effects on reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels, as well as bone marrow composition and peripheral blood counts, were investigated during aging (up to 24 month).
The polymorphism correlated with significantly decreased ROS levels in aged mice. Effects on hematopoiesis were marginal and not statistically significant: numbers of erythroid cells in bone marrow, as well as mean corpuscular hemoglobin, tended to decrease over time.
The investigated polymorphism is associated with decreased ROS levels in aged hematopoietic cells but does not significantly influence hematopoiesis itself.
Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  • Mus musculus (House mouse)
View this product on CiteAb