Product Citations: 7

Differential Roles of Macrophages and Microglia in Subretinal Fibrosis Secondary to Neovascular Age-Related Macular Degeneration.

In Investigative Ophthalmology & Visual Science on 3 March 2025 by Szczepan, M., Llorián-Salvador, M., et al.

To investigate the differential role of infiltrating CCR2+ macrophages and CX3CR1+ microglia in neovascular AMD (nAMD)-mediated subretinal fibrosis.
Subretinal fibrosis was induced using the two-stage laser protocol in C57BL/6J or CX3CR1gfp/+ mice. The fibrotic lesion was detected using collagen-1 staining in retinal pigment epithelial /choroidal flatmounts. Infiltrating macrophages and microglial were identified using F4/80, CCR2, and CX3CR1 markers at one, three, six, and 10 days after the second laser. Circulating CCR2+ monocytes were depleted using the MC-21 antibody, whereas CX3CR1+ microglia were depleted using PLX5622. BV2 microglia were treated with TGF-β1 for 96 hours, and their profibrotic potential was examined by quantitative PCR and immunocytochemistry.
Subretinal fibrosis lesions developed three days after the second laser, accompanied by persistent CCR2+F4/80+ macrophage and CX3CR1+ cell infiltration. Inflammation in the first three days after the second laser was dominated by filtrating CX3CR1+ cells, and the number increased until day (D) 10 post-second laser. Depletion of CCR2+ monocytes from D5-10 significantly reduced the vascular and fibrotic components of the lesion, while CX3CR1+ cell depletion reduced Isolectin B4+ but not collagen-1+ lesion size. Bone marrow-derived macrophages from D6 and D10 mice expressed significantly higher levels of α-smooth muscle actin (α-SMA) and collagen-1 compared to cells from D1 and D3. TGFβ1 treatment increased TMEM119, CX3CR1, IL1b and iNOS gene expression but did not affect Acta2 and Col1a1 gene expression in BV2 cells.
CCR2+ monocytes, but not CX3CR1+ microglia, critically contribute to the development of subretinal fibrosis in nAMD.

  • Neuroscience

Low hemoglobin causes hematoma expansion and poor intracerebral hemorrhage outcomes

Preprint on BioRxiv : the Preprint Server for Biology on 19 August 2024 by Cottarelli, A., Mamoon, R., et al.

ABSTRACT Objectives Although lower hemoglobin levels associate with worse intracerebral hemorrhage (ICH) outcomes, causal drivers for this relationship remain unclear. We investigated the hypothesis that lower hemoglobin relates to increased hematoma expansion (HE) risk and poor outcomes using human observational data and assessed causal relationships using a translational murine model of anemia and ICH. Methods ICH patients with baseline hemoglobin measurements and serial CT neuroimaging enrolled between 2010-2016 to a multicenter, prospective observational cohort study were studied. Patients with systemic evidence of coagulopathy were excluded. Separate regression models assessed relationships of baseline hemoglobin with HE (≥33% and/or ≥6mL growth) and poor long-term neurological outcomes (modified Rankin Scale 4-6) after adjusting for relevant covariates. Using a murine collagenase ICH model with serial neuroimaging in anemic vs. non-anemic C57/BL6 mice, intergroup differences in ICH lesion volume, ICH volume changes, and early mortality were assessed. Results Among 1190 ICH patients analyzed, lower baseline hemoglobin levels associated with increased odds of HE (adjusted OR per -1g/dL hemoglobin decrement: 1.10 [1.02-1.19]) and poor 3-month clinical outcomes (adjusted OR per -1g/dL hemoglobin decrement: 1.11 [1.03-1.21]). Similar relationships were seen with poor 6 and 12-month outcomes. In our animal model, anemic mice had significantly greater ICH lesion expansion, final lesion volumes, and greater mortality, as compared to non-anemic mice. Conclusions These results, in a human cohort and a mouse model, provide novel evidence suggesting that anemia has causal roles in HE and poor ICH outcomes. Additional studies are required to clarify whether correcting anemia can improve these outcomes.

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common life-threatening syndrome with no effective pharmacotherapy. Sepsis-related ARDS is the main type of ARDS and is more fatal than other types. Extracellular vesicles (EVs) are considered novel mediators in the development of inflammatory diseases. Our previous research suggested that endothelial cell-derived EVs (EC-EVs) play a crucial role in ALI/ARDS development, but the mechanism remains largely unknown. Here, we demonstrated that the number of circulating EC-EVs was increased in sepsis, exacerbating lung injury by targeting monocytes and reprogramming them towards proinflammatory macrophages. Bioinformatics analysis and further mechanistic studies revealed that vascular cell adhesion molecule 1 (VCAM1), overexpressed on EC-EVs during sepsis, activated the NF-κB pathway by interacting with integrin subunit alpha 4 (ITGA4) on the monocyte surface, rather than the tissue resident macrophage surface, thereby regulating monocyte differentiation. This effect could be attenuated by decreasing VCAM1 levels in EC-EVs or blocking ITGA4 on monocytes. Furthermore, the number of VCAM1+ EC-EVs was significantly increased in patients with sepsis-related ARDS. These findings not only shed light on a previously unidentified mechanism underling sepsis-related ALI/ARDS, but also provide potential novel targets and strategies for its precise treatment.
© 2024 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.

Oligodendrocyte myelin glycoprotein as a novel target for pathogenic autoimmunity in the CNS.

In Acta Neuropathologica Communications on 30 November 2020 by Gerhards, R., Pfeffer, L. K., et al.

Autoimmune disorders of the central nervous system (CNS) comprise a broad spectrum of clinical entities. The stratification of patients based on the recognized autoantigen is of great importance for therapy optimization and for concepts of pathogenicity, but for most of these patients, the actual target of their autoimmune response is unknown. Here we investigated oligodendrocyte myelin glycoprotein (OMGP) as autoimmune target, because OMGP is expressed specifically in the CNS and there on oligodendrocytes and neurons. Using a stringent cell-based assay, we detected autoantibodies to OMGP in serum of 8/352 patients with multiple sclerosis, 1/28 children with acute disseminated encephalomyelitis and unexpectedly, also in one patient with psychosis, but in none of 114 healthy controls. Since OMGP is GPI-anchored, we validated its recognition also in GPI-anchored form. The autoantibodies to OMGP were largely IgG1 with a contribution of IgG4, indicating cognate T cell help. We found high levels of soluble OMGP in human spinal fluid, presumably due to shedding of the GPI-linked OMGP. Analyzing the pathogenic relevance of autoimmunity to OMGP in an animal model, we found that OMGP-specific T cells induce a novel type of experimental autoimmune encephalomyelitis dominated by meningitis above the cortical convexities. This unusual localization may be directed by intrathecal uptake and presentation of OMGP by meningeal phagocytes. Together, OMGP-directed autoimmunity provides a new element of heterogeneity, helping to improve the stratification of patients for diagnostic and therapeutic purposes.

  • ELISA
  • Rattus norvegicus (Rat)
  • Immunology and Microbiology
  • Neuroscience

Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils.

In PLoS ONE on 14 August 2013 by Faraday, N., Schunke, K., et al.

Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.

  • Mus musculus (House mouse)
  • Cardiovascular biology
View this product on CiteAb