Product Citations: 35

Aspirin prevents metastasis by limiting platelet TXA2 suppression of T cell immunity.

In Nature on 1 April 2025 by Yang, J., Yamashita-Kanemaru, Y., et al.

Metastasis is the spread of cancer cells from primary tumours to distant organs and is the cause of 90% of cancer deaths globally1,2. Metastasizing cancer cells are uniquely vulnerable to immune attack, as they are initially deprived of the immunosuppressive microenvironment found within established tumours3. There is interest in therapeutically exploiting this immune vulnerability to prevent recurrence in patients with early cancer at risk of metastasis. Here we show that inhibitors of cyclooxygenase 1 (COX-1), including aspirin, enhance immunity to cancer metastasis by releasing T cells from suppression by platelet-derived thromboxane A2 (TXA2). TXA2 acts on T cells to trigger an immunosuppressive pathway that is dependent on the guanine exchange factor ARHGEF1, suppressing T cell receptor-driven kinase signalling, proliferation and effector functions. T cell-specific conditional deletion of Arhgef1 in mice increases T cell activation at the metastatic site, provoking immune-mediated rejection of lung and liver metastases. Consequently, restricting the availability of TXA2 using aspirin, selective COX-1 inhibitors or platelet-specific deletion of COX-1 reduces the rate of metastasis in a manner that is dependent on T cell-intrinsic expression of ARHGEF1 and signalling by TXA2 in vivo. These findings reveal a novel immunosuppressive pathway that limits T cell immunity to cancer metastasis, providing mechanistic insights into the anti-metastatic activity of aspirin and paving the way for more effective anti-metastatic immunotherapies.
© 2025. The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Decellularized fish swim bladder patch loaded with mesenchymal stem cells inhibits neointimal hyperplasia.

In Journal of Biomedical Materials Research. Part B, Applied Biomaterials on 1 March 2023 by Sun, P., Wu, H., et al.

We previously showed decellularized fish swim bladder can be used as vascular patch and tube graft in rats, mesenchymal stem cells (MSCs) have showed the capability to inhibit neointimal hyperplasia in different animal models. We hypothesized that decellularized fish swim bladder patch loaded with MSCs (bioinspired patch) can inhibit neointimal hyperplasia in a rat aortic patch angioplasty model. Rat MSCs were grown in vitro and flow cytometry was used to confirm their quality. 3.6 × 105 MSCs were mixed into 100 μl of sodium alginate (SA)/hyaluronic acid (HA) hydrogel, two layers of fish swim bladders (5 mm × 5 mm) were sutured together, bioinspired patch was created by injection of hydrogel with MSCs into the space between two layers of fish swim bladder patches. Decellularized rat thoracic aorta patch was used as control. Patches were harvested at days 1 and 14 after implantation. Samples were examined by histology, immunohistochemistry, and immunofluorescence. The decellularized rat thoracic aorta patch and the fish swim bladder patch had a similar healing process after implantation. The bioinspired patch had a similar structure like native aorta. Bioinspired patch showed a decreased neointimal thickness (p = .0053), fewer macrophages infiltration (p = .0090), and lower proliferation rate (p = .0291) compared to the double layers fish swim bladder patch group. Decellularized fish swim bladder patch loaded with MSCs can inhibit neointimal hyperplasia effectively. Although this is a preliminary animal study, it may have a potential application in large animals or clinical research.
© 2022 Wiley Periodicals LLC.

  • FC/FACS
  • Rattus norvegicus (Rat)
  • Stem Cells and Developmental Biology

The nasal-associated lymphoid tissues (NALT) are generally accepted as an immune induction site, but the activation of naïve T-cells in that compartment has not been well-characterized. I wanted to determine if early events in naïve CD4+ T cell activation and the extent of antigen specific cell division are similar in NALT to that observed in other secondary lymphoid compartments. I performed antigen tracking experiments and analyzed the activation of naïve antigen-specific CD4+ T cells in the nasal-associated lymphoid tissues (NALT). I directly observed transepithelial transport of fluorescently labeled antigen from the lumen of the airway to the interior of the NALT two hours following immunization. One day following intranasal (i.n.) immunization with antigen and adjuvant, antigen-specific CD4+ T cells in the NALT associated as clusters, while antigen-specific CD4+ T cells in control mice immunized with adjuvant only remained dispersed. The antigen-specific CD4+ populations in the NALT and cranial deep cervical lymph nodes of immunized mice expanded significantly by day three following immunization. These findings are consistent with initial activation of naïve CD4+ T cells in the NALT and offer insight into adjuvant mechanism of flagellin in the upper respiratory compartment.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Effects of bone marrow-derived mesenchymal stem cells on doxorubicin-induced liver injury in rats.

In Journal of Biochemical and Molecular Toxicology on 1 April 2022 by Celik Samanci, T., Gökçimen, A., et al.

Doxorubicin (DOX) is a potent chemotherapeutic agent and has toxic effects on various organs, including the liver. In the current study, we aimed to investigate the effects of bone-marrow-derived mesenchymal stem cell (BM-MSC) administration on DOX-induced hepatotoxicity in rats. 24 Wistar-albino rats were divided into three groups: Control, DOX, and DOX+MSC. DOX (20 mg/kg) was administered to the DOX group. In the DOX + MSC group, BM-MSCs (2 × 106 ) were given through the tail vein following DOX administration. DOX administration led to significant structural liver injury. Besides this, oxidative balance in the liver was impaired following DOX administration. DOX administration also led to an increase in apoptotic cell death in the liver. Structural and oxidative changes were significantly alleviated with the administration of BM-MSCs. Furthermore, BM-MSC administration suppressed excessive apoptotic cell death. Our findings revealed that BM-MSC administration may alleviate DOX-induced liver injury via improving the oxidative status and limiting apoptotic cell death in the liver tissue.
© 2022 Wiley Periodicals LLC.

  • FC/FACS
  • Rattus norvegicus (Rat)
  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology

This protocol details the procedure for CRISPR-assisted insertion of epitopes (CRISPitope), a flexible approach for generating tumor cells expressing model CD8+ T cell epitopes fused to endogenously encoded gene products of choice. CRISPitope-engineered tumor cells can be recognized by T cell receptor-transgenic (TCRtg) CD8+ T cells that are widely used in immunology research. Using mice inoculated with CRISPitope-engineered tumor cells, researchers can investigate how the choice of the target antigen for T cell immunotherapies influences treatment efficacy and resistance mechanisms. For complete details on the use and execution of this protocol, please refer to Effern et al. (2020).
© 2021 The Author(s).

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb