Product Citations: 51

Macrophage plays critical roles in immune-related diseases, acting as a crucial therapeutic target for immunotherapy. Rational design and development of effective therapeutics for macrophage reprogramming are still challenging. Here, we rationally engineered polysaccharide nanoadjuvants to reprogram macrophage functions for enhanced immunotherapy in multiple diseases through a macrophage phenotype-specific nanoprobe (MPSNPr)-assisted high-throughput phenotypic screen. This MPSNPr exhibited high macrophage M1 phenotype specificity because of the formation of H-aggregates on the outer surface and the binding to glucose transporter 1 receptors by the polysaccharide nanocarrier. Based on this MPSNPr, a high-throughput platform was constructed and employed to screen a variety of pharmaceuticals for macrophage reprogramming, being able to identify both pro-inflammatory and anti-inflammatory drug candidates. Polysaccharide nanoadjuvants, Dex-BA and Dex-SAL, were rationally engineered with two potent candidates to amplify macrophage reprogramming efficacy both in vitro and in vivo. Dex-BA significantly inhibited tumor growth by inducing macrophage M1 polarization, dendritic cell maturation, and cytotoxic T cell activation in a mice melanoma model. Dex-SAL alleviated rheumatoid arthritis symptoms with reduced inflammation by reprogramming activated macrophages toward anti-inflammatory phenotype. Our work provides a robust strategy for the rational design and development of effective therapeutics for enhanced macrophage-mediated immunotherapy in diverse diseases.

  • Cancer Research
  • Immunology and Microbiology

Psoriasis is a chronic inflammatory skin disease characterised by inflammatory cell infiltration, keratinocyte hyperproliferation and increased neovascularization. Despite extensive research, the precise mechanisms underlying psoriasis pathology and treatment strategies remain unclear because of a complex aetiology and disease progression. Hence, in this study, we aimed to identify potential therapeutic targets for psoriasis and explore their effects on disease progression. We observed that G protein-coupled receptor LGR4 attenuates psoriasis progression. Bioinformatics analysis of publicly available clinical data revealed lower LGR4 expression in the skin lesions of patients with psoriasis than in their non-lesioned skin. Both in vitro (HaCaT cell) and in vivo (mouse) models confirmed this phenomenon. The Lgr4-knockout mouse model further confirmed that LGR4 plays a positive role in psoriasis progression. Specifically, Lgr4 knockout promoted the secretion of inflammatory factors, accumulation of local immunocyte infiltration in skin lesions, and keratinocyte proliferation. In conclusion, we demonstrated that LGR4 is critical to limiting psoriasis progression, suggesting that it is a viable target for the clinical management of this skin condition.
© 2024 John Wiley & Sons Ltd.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

The regulation of Cd4 expression during T-cell development and immune responses is essential for proper lineage commitment and function in the periphery. However, the mechanisms of genetic and epigenetic regulation are complex, and their interplay not entirely understood. Previously, we demonstrated the need for CD4 upregulation during positive selection to ensure faithful commitment of MHC-II-restricted T cells to the CD4 lineage. In this study, we investigate whether a conserved region, here called NCE, that is proximal to the Cd4 silencer and contains E4m has the required developmental-stage-specific canonical enhancer function and TCR responsiveness to mediate the CD4 upregulation required to prevent lineage errors.
To investigate the role of NCE, transient transfection of reporter plasmids was performed in thymoma cell lines arrested at the double-positive (DP, CD4+CD8+) and intermediate (INT, CD4+CD8lo) stages of development. CRISPR/Cas9-mediated deletion of the coreNCE/E4m region was carried out in these cell lines to assess its impact on CD4 surface expression, re-expression rates, and TCR signaling responsiveness. To avoid developmental alterations from direct manipulation of the endogenous Cd4 locus in vivo, BAC-transgenic reporter mice were generated with the locus modified to express EGFP in the presence or absence of NCE. EGFP mRNA levels were measured via RT-qPCR, and EGFP fluorescence was analyzed in post-selection thymocytes.
Our in vitro experiments demonstrate that NCE by itself can function as an enhancer at the INT, but not the DP stage of development. Furthermore, CRISPR/Cas9-mediated deletion of coreNCE/E4m resulted in reduced CD4 surface levels, slower re-expression rates, and reduced TCR signaling responsiveness in INT cells, but not in DP cells. In vivo, NCE-sufficient transgenic mice exhibited upregulation of Cd4 reporter EGFP mRNA levels at the INT stage and a corresponding upregulation of EGFP fluorescence, whereas NCE-deficient mice showed a significant loss of Cd4 reporter EGFP mRNA and no detectable EGFP production in any post-selection thymocytes.
This study demonstrates that the canonical enhancer function of coreNCE/E4m is essential for CD4 upregulation following positive selection. The NCE region, with its developmental-stage-specific activity and its known epigenetic regulatory capabilities, ensures faithful lineage commitment to the CD4 lineage.
Copyright © 2025 Swan, Fujii, Guzynski, Page, Meyers, Penev, Littleton, Azzahra, Richardson and Sarafova.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

SON is an essential m6A target for hematopoietic stem cell fate.

In Cell Stem Cell on 7 December 2023 by Luo, H., Cortés-López, M., et al.

Stem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. m6A RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential m6A target required for murine HSC self-renewal, symmetric commitment, and inflammation control. Global profiling of m6A identified that m6A mRNA methylation of Son increases during HSC commitment. Upon m6A depletion, Son mRNA increases, but its protein is depleted. Reintroduction of SON rescues defects in HSC symmetric commitment divisions and engraftment. Conversely, Son deletion results in a loss of HSC fitness, while overexpression of SON improves mouse and human HSC engraftment potential by increasing quiescence. Mechanistically, we found that SON rescues MYC and suppresses the METTL3-HSC inflammatory gene expression program, including CCL5, through transcriptional regulation. Thus, our findings define a m6A-SON-CCL5 axis that controls inflammation and HSC fate.
Copyright © 2023 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology
View this product on CiteAb