Product Citations: 167

3 images found

Spinal cord injury (SCI) is significantly hampered by an inflammatory microenvironment, prompting continued efforts in drug development to address inflammation. Research shows that quercetin (Que) exhibits excellent performance in reducing inflammation and neuroprotection. However, its application is limited by poor solubility, notable side effects, and the unique pathophysiology of the spinal cord. In this study, we introduce a novel multifunctional liposome hydrogel drug delivery system (QLipTC@HDM), obtained by incorporating liposomes with blood-spinal cord barrier penetration and injury site targeting properties (LipTC) into a dual-network viscous hydrogel (HDM). Our results demonstrate that encapsulating Que in LipTC (QLipTC) enhances solubility, minimizes toxic side effects, facilitates lesion targeting, and aids in crossing the blood-spinal cord barrier. Moreover, encapsulation in HDM significantly prolongs the retention of QLipTC at the injury site after local administration. Crucially, our findings reveal that QLipTC@HDM induces M2 phenotype transformation in glial cells and in mice with SCI, thereby mitigating inflammation. This intervention additionally preserves the integrity of the blood-spinal cord barrier, optimizes the spinal cord microenvironment, reduces glial scarring, promotes axonal regeneration, and enhances motor function recovery in SCI mice. In summary, our investigations highlight the potential of this disease-specific drug delivery system as a promising therapeutic approach for the treatment and management of SCI.
© 2025 The Authors.

  • Neuroscience

The emergence of immunotherapy has revolutionized the paradigm of cancer treatment with immune checkpoint blockades (ICB) in solid cancers, including colorectal cancer (CRC). However, only a small subset of CRC patients harboring deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) benefits from ICB therapy. A very limited response to ICB therapy has been achieved in MMR-proficient CRC, representing a significant challenge limiting the clinical application of immunotherapy. MMR is the critical DNA repair pathway that maintains genomic integrity by correcting DNA mismatches, which is mediated by the MutSα or MutSβ complex consisting of MSH2 with MSH6 and MSH3, respectively. Given that MMR status directs effective immune response, we sought to determine whether targeting MMR capacity boosts ICB efficacy.
Azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC and xenograft model were used to evaluate the function of PRMT6 and response to PRMT6 inhibitor EPZ020411 and combination therapy of PD1 and EPZ020411. Biochemical assays were performed to elucidate the underlying mechanism of PRMT6-mediated MSH2 methylation and immune evasion.
We have identified PRMT6 as a crucial regulator of MMR capacity via MSH2 dimethylation at R171 and R219. Such a modification abrogates its MMR capacity and prevents the recruitment of MSH3 and MSH6. PRMT6 loss or inhibition triggers cytosolic DNA accumulation and cGAS-STING signaling activation, leading to enhanced immune response in PRMT6-deficient colon tumors or xenografts. Pharmacological inhibition of PRMT6 using EPZ020411 promotes mutagenesis and destabilizes MutSα or MutSβ assembly, and prolonged EPZ020411 exposure maintains an MSI-like phenotype in microsatellite stability (MSS) cells. EPZ020411 treatment sensitizes ICB efficacy of MSS cells, but not MSI cells in vivo. Similar effects have been observed in MSS colon tumors induced by AOM/DSS.
Our study provides a preclinical proof of concept to overcome resistance to immunotherapy by targeting PRMT6 in CRC with MSS.
© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.

  • Cancer Research
  • Immunology and Microbiology

C-C chemokine receptor type 2 (CCR2-) cardiac-resident macrophages (CCR2- cRMs) are known to promote cardiac repair after myocardial infarction (MI). However, the substantial depletion and slow recovery of CCR2- cRMs pose significant barriers in cardiac recovery. Here, we construct a functional conductive cardiac patch (CCP) that can provide exogenously elastic conductive microenvironment and induce endogenously reparative microenvironment mediated by CCR2- cRMs for MI repair. This CCP exhibits suitable mechanical properties, conductivity, and high water retention, reminiscent of natural myocardium, which can actively engage in modulating CCR2- cRM renewal and their cell crosstalk. The functional CCP can promote the expression of Connexin43 between CCR2- cRMs and cardiomyocytes (CMs) and regulate paracrine signaling to activate epicardial cell epithelial-to-mesenchymal transition (EMT) toward endothelial cells using rat and Wt1CreERT2 transgenic lineage tracing mice. Overall, this study provides a promising strategy to construct a synergistic reparative microenvironment for MI repair.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cardiovascular biology
  • Immunology and Microbiology

Interleukin-6 (IL-6) plays a central role in sepsis-induced cytokine storm involving immune hyperactivation and early neutrophil activation. Programmed death protein-1 (PD-1) is associated with sepsis-induced immunosuppression and lymphocyte apoptosis. However, the effects of simultaneous blockade of IL-6 and PD-1 in a murine sepsis model are not well understood.
In this study, sepsis was induced in male C57BL/6 mice through cecal ligation and puncture (CLP). IL-6 blockade, PD-1 blockade, or combination of both was administered 24 h after CLP. Peripheral blood count, cytokine level, lymphocyte apoptosis in the spleen, neutrophil infiltration in the lungs and liver, and survival rate were measured. The mortality rate of the IL-6/PD-1 group was lower, though not statistically significant (p = 0.164), than that of CLP mice (75.0% vs. 91.7%). The IL-6/PD-1 group had lower neutrophil percentage and platelet count compared with the CLP group; no significant difference was observed in other cytokine levels. The IL-6/PD-1 group also showed reduced T lymphocyte apoptosis in the spleen and decreased neutrophil infiltration in the liver and lungs.
IL-6/PD-1 dual blockade reduces neutrophil infiltration, lymphocyte apoptosis, and bacterial burden while preserving tissue integrity in sepsis. Although the improvement in survival was not statistically significant, these findings highlight its potential as a therapeutic approach in sepsis.
© 2025. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Identification of human cranio-maxillofacial skeletal stem cells for mandibular development.

In Science Advances on 3 January 2025 by Wang, Z., Wang, K., et al.

Compared with long bone that arises from the mesoderm, the major portion of the maxillofacial bones and the front bone of the skull are derived from cranial neural crest cells and undergo intramembranous ossification. Human skeletal stem cells have been identified in embryonic and fetal long bones. Here, we describe a single-cell atlas of the human embryonic mandible and identify a population of cranio-maxillofacial skeletal stem cells (CMSSCs). These CMSSCs are marked by interferon-induced transmembrane protein 5 (IFITM5) and are specifically located around the periosteum of the jawbone and frontal bone. Additionally, these CMSSCs exhibit strong self-renewal and osteogenic differentiation capacities but lower chondrogenic differentiation potency, mediating intramembranous bone formation without cartilage formation. IFITM5+ cells are also observed in the adult jawbone and exhibit functions similar to those of embryonic CMSSCs. Thus, this study identifies CMSSCs that orchestrate the intramembranous ossification of cranio-maxillofacial bones, providing a deeper understanding of cranio-maxillofacial skeletal development and promising seed cells for bone repair.

  • Stem Cells and Developmental Biology
View this product on CiteAb