Product Citations: 5

VCAM-1 Density and Tumor Perfusion Predict T-cell Infiltration and Treatment Response in Preclinical Models.

In Neoplasia (New York, N.Y.) on 1 October 2019 by Riegler, J., Gill, H., et al.

Cancer immunotherapies have demonstrated durable responses in a range of different cancers. However, only a subset of patients responds to these therapies. We set out to test if non-invasive imaging of tumor perfusion and vascular inflammation may be able to explain differences in T-cell infiltration in pre-clinical tumor models, relevant for treatment outcomes. Tumor perfusion and vascular cell adhesion molecule (VCAM-1) density were quantified using magnetic resonance imaging (MRI) and correlated with infiltration of adoptively transferred and endogenous T-cells. MRI biomarkers were evaluated for their ability to detect tumor rejection 3 days after T-cell transfer. Baseline levels of these markers were used to assess their ability to predict PD-L1 treatment response. We found correlations between MRI-derived VCAM-1 density and infiltration of endogenous or adoptively transferred T-cells in some preclinical tumor models. Blocking T-cell binding to endothelial cell adhesion molecules (VCAM-1/ICAM) prevented T-cell mediated tumor rejection. Tumor rejection could be detected 3 days after adoptive T-cell transfer prior to tumor volume changes by monitoring the extracellular extravascular volume fraction. Imaging tumor perfusion and VCAM-1 density before treatment initiation was able to predict the response of MC38 tumors to PD-L1 blockade. These results indicate that MRI based assessment of tumor perfusion and VCAM-1 density can inform about the permissibility of the tumor vasculature for T-cell infiltration which may explain some of the observed variance in treatment response for cancer immunotherapies.
Copyright © 2019 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  • IHC-IF
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Role of the heparan sulfate proteoglycan syndecan-1 (CD138) in delayed-type hypersensitivity.

In The Journal of Immunology on 15 April 2009 by Kharabi Masouleh, B., ten Dam, G. B., et al.

The cell surface heparan sulfate proteoglycan syndecan-1 (CD138) modulates the activity of chemokines, cytokines, integrins, and other adhesion molecules which play important roles in the regulation of inflammation. We have previously shown that syndecan-1-deficient murine leukocytes display increased interactions with endothelial cells and increased diapedesis in vivo and in vitro. In this study, we demonstrate that syndecan-1 has an important function as a negative modulator in the murine contact allergy model of oxazolone-mediated delayed-type hypersensitivity (DTH). Following elicitation of the DTH response, syndecan-1-deficient mice showed an increase in leukocyte recruitment, resulting in an increased and prolonged edema formation. Expression of the cytokines TNF-alpha and IL-6 of the chemokines CCL5/RANTES and CCL-3/MIP-1alpha and of the adhesion molecule ICAM-1 were significantly increased in syndecan-1-deficient compared with wild-type mice. In wild-type mice, syndecan-1 mRNA and protein expression was reduced during the DTH response. The differentially increased adhesion of syndecan-1-deficient leukocytes to ICAM-1 was efficiently inhibited in vitro by CD18-blocking Abs, which emerges as one mechanistic explanation for the anti-inflammatory effects of syndecan-1. Collectively, our results show an important role of syndecan-1 in the contact DTH reaction, identifying syndecan-1 as a novel target in anti-inflammatory therapy.

  • Immunology and Microbiology

Endotoxin induced peritonitis elicits monocyte immigration into the lung: implications on alveolar space inflammatory responsiveness.

In Respiratory Research on 18 February 2006 by Steinmüller, M., Srivastava, M., et al.

Acute peritonitis developing in response to gram-negative bacterial infection is known to act as a trigger for the development of acute lung injury which is often complicated by the development of nosocomial pneumonia. We hypothesized that endotoxin-induced peritonitis provokes recruitment of monocytes into the lungs, which amplifies lung inflammatory responses to a second hit intra-alveolar challenge with endotoxin.
Serum and lavage cytokines as well as bronchoalveolar lavage fluid cells were analyzed at different time points after intraperitoneal or intratracheal application of LPS.
We observed that mice challenged with intraperitoneal endotoxin developed rapidly increasing serum and bronchoalveolar lavage fluid (BALF) cytokine and chemokine levels (TNFalpha, MIP-2, CCL2) and a nearly two-fold expansion of the alveolar macrophage population by 96 h, but this was not associated with the development of neutrophilic alveolitis. In contrast, expansion of the alveolar macrophage pool was not observed in CCR2-deficient mice and in wild-type mice systemically pretreated with the anti-CD18 antibody GAME-46. An intentional two-fold expansion of alveolar macrophage numbers by intratracheal CCL2 following intraperitoneal endotoxin did not exacerbate the development of acute lung inflammation in response to intratracheal endotoxin compared to mice challenged only with intratracheal endotoxin.
These data, taken together, show that intraperitoneal endotoxin triggers a CCR2-dependent de novo recruitment of monocytes into the lungs of mice but this does not result in an accentuation of neutrophilic lung inflammation. This finding represents a previously unrecognized novel inflammatory component of lung inflammation that results from endotoxin-induced peritonitis.

  • Immunology and Microbiology

An arthritogenic alphavirus uses the alpha1beta1 integrin collagen receptor.

In Virology on 5 June 2005 by La Linn, M., Eble, J. A., et al.

Ross River (RR) virus is an alphavirus endemic to Australia and New Guinea and is the aetiological agent of epidemic polyarthritis or RR virus disease. Here we provide evidence that RR virus uses the collagen-binding alpha1beta1 integrin as a cellular receptor. Infection could be inhibited by collagen IV and antibodies specific for the beta1 and alpha1 integrin proteins, and fibroblasts from alpha1-integrin-/- mice were less efficiently infected than wild-type fibroblasts. Soluble alpha1beta1 integrin bound immobilized RR virus, and peptides representing the alpha1beta1 integrin binding-site on collagen IV inhibited virus binding to cells. We speculate that two highly conserved regions within the cell-receptor binding domain of E2 mimic collagen and provide access to cellular collagen-binding receptors.

  • Immunology and Microbiology

PECAM-1, alpha6 integrins and neutrophil elastase cooperate in mediating neutrophil transmigration.

In Journal of Cell Science on 1 May 2005 by Wang, S., Dangerfield, J. P., et al.

The heterogeneous nature of the perivascular basement membrane (composed primarily of laminin and collagen type IV) suggests the existence of an elaborate array of adhesive interactions and possibly proteolytic events in leukocyte migration through this barrier. In this context, blockade of alpha6 integrins (laminin receptors), neutrophil elastase (NE) or both inhibited neutrophil migration through interleukin-1beta (IL-1beta)-stimulated mouse cremasteric venules, as observed by intravital microscopy. Furthermore, analysis of tissues by confocal microscopy indicated a synergistic role for alpha6 integrins and NE in mediating neutrophil migration through the perivascular basement membrane. Using a combined in vitro and in vivo experimental approach, the findings of this study also suggest that alpha6 integrins and NE are mobilized from intracellular stores to the cell surface of transmigrating mouse neutrophils, although these events occur via mechanisms dependent on and independent of platelet/endothelial-cell adhesion molecule 1 (PECAM-1, CD31), respectively. Despite different regulatory mechanisms, blockade of alpha6 integrins or NE inhibited migration of murine neutrophils through laminin-coated filters in vitro. Collectively, the findings suggest that, whereas regulation of the expression of alpha6 integrins and NE occur via different adhesive mechanisms, these molecules might act in a cooperative manner in mediating neutrophil migration through venular walls, in particular the perivascular basement membrane.

  • Cell Biology
View this product on CiteAb