Product Citations: 3

We documented earlier that Mw (heat-killed suspension of Mycobacterium indicus pranii) adjuvant when used with conserved antigens, nucleoprotein (NP), and ectodomain of matrix (M2) protein (M2e) provided complete protection against homologous (clade 2.2) virus challenge in mice. The present study extends these observations to inter-clade challenge (clade 2.3.2.1) H5N1 virus and attempts to understand preliminary immunologic basis for the observed protection. Female BALB/c mice immunized with a single or two doses of vaccine formulations (clade 2.2 antigens) were challenged with 100LD50 homologous or heterologous (clade 2.3.2.1) virus. To understand the preliminary immunologic mechanism, we studied proportions of selected immune cell types, immune response gene expression, and Th1/Th2 cytokines induced by antigen-stimulated splenocytes from immunized mice, at different time points. Complete protection was conferred by Mw-HA, Mw-HA + NP, and Mw-HA + NP + M2e against homologous challenge. The protection correlated with IgG2a antibody titers indicating important role of Th1 response. Despite high inter-cladal antigenic differences, complete protection against the heterologous strain was achieved with Mw-HA + NP + M2e. Of note, a single dose with higher antigen concentrations (50 µg HA + 50 μg NP + 50 μg M2e) led to 80% protection against clade 2.3.2.1 strain. The protection conferred by Mw-HNM correlated with induction of IFN-γ, CD8+ T cytotoxic cells, and CD4+ T helper cells. Mw-adjuvanted HA + NP + M2e combination represents a promising vaccine candidate deserving further evaluation.

  • Immunology and Microbiology

Induction of tumor-specific acquired immunity against already established tumors by selective stimulation of innate DEC-205(+) dendritic cells.

In Cancer Immunology, Immunotherapy : CII on 1 July 2010 by Moriya, K., Wakabayashi, A., et al.

Two major distinct subsets of dendritic cells (DCs) are arranged to regulate our immune responses in vivo; 33D1(+) and DEC-205(+) DCs. Using anti-33D1-specific monoclonal antibody, 33D1(+) DCs were successfully depleted from C57BL/6 mice. When 33D1(+) DC-depleted mice were stimulated with LPS, serum IL-12, but not IL-10 secretion that may be mediated by the remaining DEC-205(+) DCs was markedly enhanced, which may induce Th1 dominancy upon TLR signaling. The 33D1(+) DC-depleted mice, implanted with syngeneic Hepa1-6 hepatoma or B16-F10 melanoma cells into the dermis, showed apparent inhibition of already established tumor growth in vivo when they were subcutaneously (sc) injected once or twice with LPS after tumor implantation. Moreover, the development of lung metastasis of B16-F10 melanoma cells injected intravenously was also suppressed when 33D1(+) DC-deleted mice were stimulated twice with LPS in a similar manner, in which the actual cell number of NK1.1(+)CD3(-) NK cells in lung tissues was markedly increased. Furthermore, intraperitoneal (ip) administration of a very small amount of melphalan (L: -phenylalanine mustard; L: -PAM) (0.25 mg/kg) in LPS-stimulated 33D1(+) DC-deleted mice helped to induce H-2K(b)-restricted epitope-specific CD8(+) cytotoxic T lymphocytes (CTLs) among tumor-infiltrating lymphocytes against already established syngeneic E.G7-OVA lymphoma. These findings indicate the importance and effectiveness of selective targeting of a specific subset of DCs, such as DEC-205(+) DCs alone or with a very small amount of anticancer drugs to activate both CD8(+) CTLs and NK effectors without externally added tumor antigen stimulation in vivo and provide a new direction for tumor immunotherapy.

  • Cancer Research
  • Immunology and Microbiology

CD11c is an antigen receptor predominantly expressed on dendritic cells (DC), to which antigen targeting has been shown to induce robust antigen-specific immune responses. To facilitate targeted delivery of tumor antigens to DCs, we generated fusion proteins consisting of the extracellular domain of human HER or its rat homologue neu, fused to the single-chain fragment variable specific for CD11c (scFv(CD11c)-HER2/neu).
Induction of cellular and humoral immune responses and antitumoral activity of the fusion proteins admixed with DC-activating CpG oligonucleotides (scFv(CD11c)-HER2/neu(CpG)) were tested in transplantable HER2/neu-expressing murine tumor models and in transgenic BALB-neuT mice developing spontaneous neu-driven mammary carcinomas.
Vaccination of BALB/c mice with scFv(CD11c)-HER2(CpG) protected mice from subsequent challenge with HER2-positive, but not HER2-negative, murine breast tumor cells, accompanied by induction of strong HER2-specific T-cell and antibody responses. In a therapeutic setting, injection of scFv(CD11c)-HER2(CpG) caused rejection of established HER2-positive tumors. Importantly, antitumoral activity of such a fusion protein vaccine could be reproduced in immunotolerant BALB-neuT mice, where scFv(CD11c)-neu(CpG) vaccination significantly protected against a subsequent challenge with neu-expressing murine breast tumor cells and markedly delayed the onset of spontaneous mammary carcinomas.
CD11c-targeted protein vaccines for in vivo delivery of tumor antigens to DCs induce potent immune responses and antitumoral activities and provide a rationale for further development of this approach for cancer immunotherapy.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb