Product Citations: 17

Stem cell therapy holds significant potential for skeletal muscle repair, with in vitro-generated human muscle reserve cells (MuRCs) emerging as a source of quiescent myogenic stem cells that can be injected to enhance muscle regeneration. However, the clinical translation of such therapies is hampered by the need for fetal bovine serum (FBS) during the in vitro generation of human MuRCs. This study aimed to determine whether fresh allogeneic human platelet-rich plasma (PRP) combined or not with hyaluronic acid (PRP-HA) could effectively replace xenogeneic FBS for the ex vivo expansion and differentiation of human primary myoblasts. Cells were cultured in media supplemented with either PRP or PRP-HA and their proliferation rate, cytotoxicity and myogenic differentiation potential were compared with those cultured in media supplemented with FBS. The results showed similar proliferation rates among human myoblasts cultured in PRP, PRP-HA or FBS supplemented media, with no cytotoxic effects. Human myoblasts cultured in PRP or PRP-HA showed reduced fusion ability upon differentiation. Nevertheless, we also observed that human MuRCs generated from PRP or PRP-HA myogenic cultures, exhibited increased Pax7 expression and delayed re-entry into the cell cycle upon reactivation, indicating a deeper quiescent state of human MuRCs. These results suggest that allogeneic human PRP effectively replaces FBS for the ex vivo expansion and differentiation of human myoblasts and favors the in vitro generation of Pax7High human MuRCs, with important implications for the advancement of stem cell-based muscle repair strategies.
© 2024. The Author(s).

  • Homo sapiens (Human)

Pyroptotic T cell-derived active IL-16 has a driving function in ovarian endometriosis development.

In Cell Reports Medicine on 19 March 2024 by Zhang, J., Zhao, W., et al.

Endometriosis, affecting 6%-10% of women, often leads to pain and infertility and its underlying inflammatory mechanisms are poorly understood. We established endometriosis models in wild-type and IL16KO mice, revealing the driver function of IL-16 in initiating endometriosis-related inflammation. Using an in vitro system, we confirmed iron overload-induced GSDME-mediated pyroptosis as a key trigger for IL-16 activation and release. In addition, our research led to the development of Z30702029, a compound inhibiting GSDME-NTD-mediated pyroptosis, which shows promise as a therapeutic intervention for endometriosis. Importantly, our findings extend beyond endometriosis, highlighting GSDME-mediated pyroptosis as a broader pathway for IL-16 release and offering insights into potential treatments for various inflammatory conditions.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Immortalized human myoblast cell lines for the delivery of therapeutic proteins using encapsulated cell technology.

In Molecular Therapy. Methods Clinical Development on 8 September 2022 by Lathuilière, A., Vernet, R., et al.

Despite many promising results obtained in previous preclinical studies, the clinical development of encapsulated cell technology (ECT) for the delivery of therapeutic proteins from macrocapsules is still limited, mainly due to the lack of an allogeneic cell line compatible with therapeutic application in humans. In our work, we generated an immortalized human myoblast cell line specifically tailored for macroencapsulation. In the present report, we characterized the immortalized myoblasts and described the engineering process required for the delivery of functional therapeutic proteins including a cytokine, monoclonal antibodies and a viral antigen. We observed that, when encapsulated, the novel myoblast cell line can be efficiently frozen, stored, and thawed, which limits the challenge imposed by the manufacture and supply of encapsulated cell-based therapeutic products. Our results suggest that this versatile allogeneic cell line represents the next step toward a broader development and therapeutic use of ECT.
© 2022 The Authors.

  • FC/FACS
  • Homo sapiens (Human)

Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys.

In Nature Microbiology on 1 September 2022 by Fenwick, C., Turelli, P., et al.

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.
© 2022. The Author(s).

  • FC/FACS
  • COVID-19

Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child.

In Nature Medicine on 1 September 2021 by Ogishi, M., Yang, R., et al.

The pathophysiology of adverse events following programmed cell death protein 1 (PD-1) blockade, including tuberculosis (TB) and autoimmunity, remains poorly characterized. We studied a patient with inherited PD-1 deficiency and TB who died of pulmonary autoimmunity. The patient's leukocytes did not express PD-1 or respond to PD-1-mediated suppression. The patient's lymphocytes produced only small amounts of interferon (IFN)-γ upon mycobacterial stimuli, similarly to patients with inborn errors of IFN-γ production who are vulnerable to TB. This phenotype resulted from a combined depletion of Vδ2+ γδ T, mucosal-associated invariant T and CD56bright natural killer lymphocytes and dysfunction of other T lymphocyte subsets. Moreover, the patient displayed hepatosplenomegaly and an expansion of total, activated and RORγT+ CD4-CD8- double-negative αβ T cells, similar to patients with STAT3 gain-of-function mutations who display lymphoproliferative autoimmunity. This phenotype resulted from excessive amounts of STAT3-activating cytokines interleukin (IL)-6 and IL-23 produced by activated T lymphocytes and monocytes, and the STAT3-dependent expression of RORγT by activated T lymphocytes. Our work highlights the indispensable role of human PD-1 in governing both antimycobacterial immunity and self-tolerance, while identifying potentially actionable molecular targets for the diagnostic and therapeutic management of TB and autoimmunity in patients on PD-1 blockade.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb