Product Citations: 5

Proinflammatory immune cells disrupt angiogenesis and promote germinal matrix hemorrhage in prenatal human brain.

In Nature Neuroscience on 1 November 2024 by Chen, J., Crouch, E. E., et al.

Germinal matrix hemorrhage (GMH) is a devastating neurodevelopmental condition affecting preterm infants, but why blood vessels in this brain region are vulnerable to rupture remains unknown. Here we show that microglia in prenatal mouse and human brain interact with nascent vasculature in an age-dependent manner and that ablation of these cells in mice reduces angiogenesis in the ganglionic eminences, which correspond to the human germinal matrix. Consistent with these findings, single-cell transcriptomics and flow cytometry show that distinct subsets of CD45+ cells from control preterm infants employ diverse signaling mechanisms to promote vascular network formation. In contrast, CD45+ cells from infants with GMH harbor activated neutrophils and monocytes that produce proinflammatory factors, including azurocidin 1, elastase and CXCL16, to disrupt vascular integrity and cause hemorrhage in ganglionic eminences. These results underscore the brain's innate immune cells in region-specific angiogenesis and how aberrant activation of these immune cells promotes GMH in preterm infants.
© 2024. The Author(s).

  • Immunology and Microbiology
  • Neuroscience

Cardiac microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterization of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. The generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. We present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Further, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
  • Stem Cells and Developmental Biology

3D culturing of human pluripotent stem cells-derived endothelial cells for vascular regeneration.

In Theranostics on 15 July 2022 by Gara, E., Zucchelli, E., et al.

Rationale: Human induced pluripotent stem cell-derived endothelial cells can be candidates for engineering therapeutic vascular grafts. Methods: Here, we studied the role of three-dimensional culture on their characteristics and function both in vitro and in vivo. Results: We found that differentiated hPSC-EC can re-populate decellularized biomatrices; they remain viable, undergo maturation and arterial/venous specification. Human PSC-EC develop antifibrotic, vasoactive and anti-inflammatory properties during recellularization. In vivo, a robust increase in perfusion was detected at the engraftment sites after subcutaneous implantation of an hPSC-EC-laden hydrogel in rats. Histology confirmed survival and formation of capillary-like structures, suggesting the incorporation of hPSC-EC into host microvasculature. In a canine model, hiPSC-EC-seeded onto decellularised vascular segments were functional as aortic grafts. Similarly, we showed the retention and maturation of hiPSC-EC and dynamic remodelling of the vessel wall with good maintenance of vascular patency. Conclusions: A combination of hPSC-EC and biomatrices may be a promising approach to repair ischemic tissues.
© The author(s).

  • IHC
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart.

In Cell Reports on 12 February 2019 by Cui, Y., Zheng, Y., et al.

The heart is the central organ of the circulatory system, and its proper development is vital for maintaining human life. Here, we used single-cell RNA sequencing to profile the gene expression landscapes of ∼4,000 cardiac cells from human embryos and identified four major types of cells: cardiomyocytes (CMs), cardiac fibroblasts, endothelial cells (ECs), and valvar interstitial cells (VICs). Atrial and ventricular CMs acquired distinct features early in heart development. Furthermore, both CMs and fibroblasts show stepwise changes in gene expression. As development proceeds, VICs may be involved in the remodeling phase, and ECs display location-specific characteristics. Finally, we compared gene expression profiles between humans and mice and identified a series of unique features of human heart development. Our study lays the groundwork for elucidating the mechanisms of in vivo human cardiac development and provides potential clues to understand cardiac regeneration.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cardiovascular biology
  • Stem Cells and Developmental Biology

Identification of epithelial stem cells in vivo and in vitro using keratin 19 and BrdU.

In Methods in Molecular Biology (Clifton, N.J.) on 13 November 2009 by Larouche, D., Lavoie, A., et al.

Progress in the identification of skin stem cells and the improvement of culture methods open the possibility to use stem cells in regenerative medicine. Based on their quiescent nature, the development of label retention assays allowed the localization of skin stem cells in the bulge region of the pilosebaceous units and in the bottom of rete ridges in glabrous skin. The development of markers such as keratin 19 also permits their study in human tissues. In this chapter, protocols to identify skin stem cells based on their slow-cycling property and their expression of keratin 19 will be described in detail. The methods include the labeling of skin stem cells within mouse or rat tissues in vivo, the labeling of proliferative human cells in vitro using 5-bromo-2-deoxyuridine (BrdU), and the detection of keratin 19 and BrdU by immunofluorescence or immunoperoxidase staining.

  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology
View this product on CiteAb