Product Citations: 5

PIM kinases regulate early human Th17 cell differentiation.

In Cell Reports on 26 December 2023 by Buchacher, T., Shetty, A., et al.

The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

Regulatory T Cells Play a Role in a Subset of Idiopathic Preterm Labor/Birth and Adverse Neonatal Outcomes.

In Cell Reports on 7 July 2020 by Gomez-Lopez, N., Arenas-Hernandez, M., et al.

Regulatory T cells (Tregs) have been exhaustively investigated during early pregnancy; however, their role later in gestation is poorly understood. Herein, we report that functional Tregs are reduced at the maternal-fetal interface in a subset of women with idiopathic preterm labor/birth, which is accompanied by a concomitant increase in Tc17 cells. In mice, depletion of functional Tregs during late gestation induces preterm birth and adverse neonatal outcomes, which are rescued by the adoptive transfer of such cells. Treg depletion does not alter obstetrical parameters in the mother, yet it increases susceptibility to endotoxin-induced preterm birth. The mechanisms whereby depletion of Tregs induces adverse perinatal outcomes involve tissue-specific immune responses and mild systemic maternal inflammation, together with dysregulation of developmental and cellular processes in the placenta, in the absence of intra-amniotic inflammation. These findings provide mechanistic evidence supporting a role for Tregs in the pathophysiology of idiopathic preterm labor/birth and adverse neonatal outcomes.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

CXCL14, a Brown Adipokine that Mediates Brown-Fat-to-Macrophage Communication in Thermogenic Adaptation.

In Cell Metabolism on 6 November 2018 by Cereijo, R., Gavaldà-Navarro, A., et al.

The beneficial effects of brown adipose tissue (BAT) are attributed to its capacity to oxidize metabolites and produce heat, but recent data suggest that secretory properties of BAT may also be involved. Here, we identify the chemokine CXCL14 (C-X-C motif chemokine ligand-14) as a novel regulatory factor secreted by BAT in response to thermogenic activation. We found that the CXCL14 released by brown adipocytes recruited alternatively activated (M2) macrophages. Cxcl14-null mice exposed to cold showed impaired BAT activity and low recruitment of macrophages, mainly of the M2 phenotype, into BAT. CXCL14 promoted the browning of white fat and ameliorated glucose/insulin homeostasis in high-fat-diet-induced obese mice. Impairment of type 2 cytokine signaling, as seen in Stat6-null mice, blunts the action of CXCL14, promoting adipose tissue browning. We propose that active BAT is a source of CXCL14, which concertedly promotes adaptive thermogenesis via M2 macrophage recruitment, BAT activation, and the browning of white fat.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Environmental arsenic exposure is a public health issue. Immunotoxicity induced by arsenic has been reported in humans and animal models. The purpose of this study was to evaluate mechanisms of As(+3) and MMA(+3) toxicity in mouse thymus cells. Because we know that MMA(+3) inhibits IL-7 signaling in mouse bone marrow pre-B cells, we studied the influence of As(+3) and MMA(+3) on T cell development in the thymus at the earliest stage of T cell development (CD4-CD8-, double negative, DN) which requires IL-7 dependent signaling. We found in a DN thymus cell line (D1) that a low concentration of MMA(+3) (50 nM) suppressed IL-7 dependent JAK1, 3 and STAT5 signaling. As(+3) suppressed STAT5 and JAK3 at higher concentrations (500 nM). Cell surface expression of the IL-7 receptor (CD127) was also suppressed by 50 nM MMA(+)3, but was increased by 500 NM As(+3), indicating possible differences in the mechanisms of action of these agents. A decrease in cyclin D1 protein expression was observed in D1 cells exposed to As(+3) at 500 nM and MMA(+3) starting at 50 nM, suggesting that arsenic at these environmentally-relevant doses suppresses early T cell development through the inhibition of IL-7 signaling pathway.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  • Immunology and Microbiology

The suture provides a niche for mesenchymal stem cells of craniofacial bones.

In Nature Cell Biology on 1 April 2015 by Zhao, H., Feng, J., et al.

Bone tissue undergoes constant turnover supported by stem cells. Recent studies showed that perivascular mesenchymal stem cells (MSCs) contribute to the turnover of long bones. Craniofacial bones are flat bones derived from a different embryonic origin than the long bones. The identity and regulating niche for craniofacial-bone MSCs remain unknown. Here, we identify Gli1+ cells within the suture mesenchyme as the main MSC population for craniofacial bones. They are not associated with vasculature, give rise to all craniofacial bones in the adult and are activated during injury repair. Gli1+ cells are typical MSCs in vitro. Ablation of Gli1+ cells leads to craniosynostosis and arrest of skull growth, indicating that these cells are an indispensable stem cell population. Twist1(+/-) mice with craniosynostosis show reduced Gli1+ MSCs in sutures, suggesting that craniosynostosis may result from diminished suture stem cells. Our study indicates that craniofacial sutures provide a unique niche for MSCs for craniofacial bone homeostasis and repair.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cell Biology
  • Stem Cells and Developmental Biology
View this product on CiteAb