Product Citations: 10

Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.
A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays. In vivo antitumour activity was assessed by establishing humanized mice bearing human MSLN-expressing MC38 (MC38/hMSLN) or CT26 (CT26/hMSLN) cells, and safety was further evaluated in cynomolgus monkeys.
We generated two humanized anti-MSLN×4-1BB bsAbs (HK013-G1/G4) by fusing an anti-4-1BB scFv to the C-terminus of an anti-MSLN VHH with an intact Fc fragment from human IgG1 or IgG4. The two bsAbs were able to block the binding of CA125 to MSLN and stimulate 4-1BB signaling pathway, which was strictly dependent on MSLN expression. In particular, HK013-G1 retained Fc function and induced ADCC effect in tumour cells, whereas HK013-G4 did not. Strikingly, HK013-G1 showed superior antitumour activity to HK013-G4 both in vitro and in vivo and remained effective even in the presence of soluble MSLN. HK013-G1 enhanced antitumour immunity and induced durable antigen-specific immune memory to prevent rechallenged tumour growth, even at a dose as low as 1 mg/kg. Furthermore, HK013-G1 did not induce nonspecific production of proinflammatory cytokines and showed good tolerability up to the highest tested dose (30 mg/kg weekly) for 5 weeks, with no HK013-G1-related adverse effects observed in cynomolgus monkeys. In addition, the mean half-life of HK013-G1 was approximately 61 and 97 h at single doses of 3 and 30 mg/kg, respectively.
The optimal anti-MSLN×4-1BB bsAb HK013-G1 exhibited synergistic antitumour effects by inducing an ADCC effect (innate immunity) and stimulating the 4-1BB signaling pathway (adaptive immunity) upon cross-bridging with MSLN with no systemic toxicity, which may offer the promise of an improved therapeutic window relative to that of 4-1BB agonists.
© 2025. The Author(s).

Recent studies have demonstrated that the antitumor immunity of immune cells can be modulated by gut microbiota and their metabolites. However, the underlying mechanisms remain unclear. Here, we showed that the serum butyric acid level is positively correlated with the expression of programmed cell death-1 (PD-1) on circulating CD8+ and Vγ9 Vδ2 (Vδ2+) T cells in patients with non-small cell lung cancer (NSCLC). Responder NSCLC patients exhibited higher levels of serum acetic acid, propionic acid, and butyric acid than non-responders. Depletion of the gut microbiota reduces butyrate levels in both feces and serum in tumor-bearing mice. Mechanistically, butyrate increased histone 3 lysine 27 acetylation (H3K27ac) at the promoter region of Pdcd1 and Cd28 in human CD8+ T cells, thereby promoting the expression of PD-1/CD28 and enhancing the efficacy of anti-PD-1 therapy. Butyrate supplementation promotes the expression of antitumor cytokines in cytotoxic CD8+ T cells by modulating the T-cell receptor (TCR) signaling pathway. Collectively, our findings reveal that the metabolite butyrate of the gut microbiota facilitates the efficacy of anti-PD-1 immunotherapy by modulating TCR signaling of cytotoxic CD8 T cells, and is a highly promising therapeutic biomarker for enhancing antitumor immunity.

  • Cell Biology
  • Immunology and Microbiology

A novel 4-1BB/HER2 bispecific antibody shows potent antitumor activities by increasing and activating tumor-infiltrating T cells.

In American Journal of Cancer Research on 10 August 2023 by Shen, A., Liu, W., et al.

Resistance to HER2-targeted therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB/CD137 is a promising drug target as a costimulatory molecule of immune cells, no therapeutic drug has been approved in the clinic because of systemic toxicity or limited efficacy. Previously, we developed a humanized anti-HER2 monoclonal antibody (mAb) HuA21 and anti-4-1BB mAb HuB6 with distinct antigen epitopes for cancer therapy. Here, we generated an Fc-muted IgG4 HER2/4-1BB bispecific antibody (BsAb) HK006 by the fusion of HuB6 scFv and HuA21 Fab. HK006 exhibited synergistic antitumor activity by blocking HER2 signal transduction and stimulating the 4-1BB signaling pathway simultaneously and strictly dependent on HER2 expression in vitro and in vivo. Strikingly, HK006 treatment enhanced antitumor immunity by increasing and activating tumor-infiltrating T cells. Moreover, HK006 did not induce nonspecific production of proinflammatory cytokines and had no obvious toxicity in mice. Overall, these data demonstrated that HK006 should be a promising candidate for HER2-positive cancer immunotherapy.
AJCR Copyright © 2023.

  • Cancer Research
  • Immunology and Microbiology

Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.
HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys.
HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies.
We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.
© 2023. The Author(s).

  • ICC-IF
  • Cancer Research
  • Immunology and Microbiology

Efficacy of immunotherapy is limited in patients with colorectal cancer (CRC) because high expression of tumor-derived transforming growth factor (TGF)-β pathway molecules and interferon (IFN)-stimulated genes (ISGs) promotes tumor immune evasion. Here, we identified a long noncoding RNA (lncRNA), VPS9D1-AS1, which was located in ribosomes and amplified TGF-β signaling and ISG expression. We show that high expression of VPS9D1-AS1 was negatively associated with T lymphocyte infiltration in two independent cohorts of CRC. VPS9D1-AS1 served as a scaffolding lncRNA by binding with ribosome protein S3 (RPS3) to increase the translation of TGF-β, TGFBR1, and SMAD1/5/9. VPS9D1-AS1 knockout downregulated OAS1, an ISG gene, which further reduced IFNAR1 levels in tumor cells. Conversely, tumor cells overexpressing VPS9D1-AS1 were resistant to CD8+ T cell killing and lowered IFNAR1 expression in CD8+ T cells. In a conditional overexpression mouse model, VPS9D1-AS1 enhanced tumorigenesis and suppressed the infiltration of CD8+ T cells. Treating tumor-bearing mice with antisense oligonucleotide drugs targeting VPS9D1-AS1 significantly suppressed tumor growth. Our findings indicate that the tumor-derived VPS9D1-AS1/TGF-β/ISG signaling cascade promotes tumor growth and enhances immune evasion and may thus serve as a potential therapeutic target for CRC.
© 2022, Yang et al.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb