Product Citations: 14

Neuromyelitis optica spectrum disorders (NMOSD) are inflammatory autoimmune disorders of the CNS. IgG autoantibodies targeting the aquaporin-4 water channel (AQP4-IgGs) are the pathogenic effector of NMOSD. Dysregulated T follicular helper (Tfh) cells have been implicated in loss of B cell tolerance in autoimmune diseases. The contribution of Tfh cells to disease activity and therapeutic potential of targeting these cells in NMOSD remain unclear. Here, we established an autoimmune model of NMOSD by immunizing mice against AQP4 via in vivo electroporation. After AQP4 immunization, mice displayed AQP4 autoantibodies in blood circulation, blood-brain barrier disruption, and IgG infiltration in spinal cord parenchyma. Moreover, AQP4 immunization induced motor impairments and NMOSD-like pathologies, including astrocytopathy, demyelination, axonal loss, and microglia activation. These were associated with increased splenic Tfh, Th1, and Th17 cells; memory B cells; and plasma cells. Aqp4-deficient mice did not display motor impairments and NMOSD-like pathologies after AQP4 immunization. Importantly, abrogating ICOS/ICOS-L signaling using anti-ICOS-L antibody depleted Tfh cells and suppressed the response of Th1 and Th17 cells, memory B cells, and plasma cells in AQP4-immunized mice. These findings were associated with ameliorated motor impairments and spinal cord pathologies. This study suggests a role of Tfh cells in the pathophysiology of NMOSD in a mouse model with AQP4 autoimmunity and provides an animal model for investigating the immunological mechanisms underlying AQP4 autoimmunity and developing therapeutic interventions targeting autoimmune reactions in NMOSD.

  • Mus musculus (House mouse)

CEACAM1 is a direct SOX10 target and inhibits melanoma immune infiltration and stemness.

In IScience on 22 December 2022 by Abou-Hamad, J., Hodgins, J. J., et al.

SOX10 is a key regulator of melanoma progression and promotes a melanocytic/differentiated state. Here we identified melanoma cell lines lacking SOX10 expression which retain their in vivo growth capabilities. More importantly, we find that SOX10 can regulate T-cell infiltration in melanoma while also decreasing common cancer stem cell (CSC) properties. We show that SOX10 regulates CEACAM1, a surface protein with immunomodulatory properties. SOX10 directly binds to a distal CEACAM1 promoter region approximately 3-4kbps from the CEACAM1 transcriptional start site. Furthermore, we show that a SOX10-CEACAM1 axis can suppress CD8+ T-cell infiltration as well as reduce CSC pool within tumors, leading to reduced tumor growth. Overall, these results identify SOX10 as a direct regulator of CEACAM1, and uncover both a pro- and anti-tumorigenic roles for SOX10 in melanoma.
Crown Copyright © 2022.

  • Cancer Research
  • Immunology and Microbiology

Dual Costimulatory and Coinhibitory Targeting with a Hybrid Fusion Protein as an Immunomodulatory Therapy in Lupus Nephritis Mice Models.

In International Journal of Molecular Sciences on 29 July 2022 by Guiteras, J., Crespo, E., et al.

Systemic lupus erythematosus is a complex autoimmune disorder mostly mediated by B-cells in which costimulatory signals are involved. This immune dysregulation can cause tissue damage and inflammation of the kidney, resulting in lupus nephritis and chronic renal failure. Given the previous experience reported with CTLA4-Ig as well as recent understanding of the PD-1 pathway in this setting, our group was encouraged to evaluate, in the NZBWF1 model, a human fusion recombinant protein (Hybri) with two domains: CTLA4, blocking the CD28-CD80 costimulatory pathway, and PD-L2, exacerbating the PD-1-PD-L2 coinhibitory pathway. After achieving good results in this model, we decided to validate the therapeutic effect of Hybri in the more severe MRL/lpr model of lupus nephritis. The intraperitoneal administration of Hybri prevented the progression of proteinuria and anti-dsDNA antibodies to levels like those of cyclophosphamide and reduced the histological score, infiltration of B-cells, T-cells, and macrophages and immune deposition in both lupus-prone models. Additionally, Hybri treatment produced changes in both inflammatory-related circulating cytokines and kidney gene expression. To summarize, both in vivo studies revealed that the Hybri effect on costimulatory-coinhibitory pathways may effectively mitigate lupus nephritis, with potential for use as a maintenance therapy.

  • FC/FACS

Resident and elicited murine macrophages differ in expression of their glycomes and glycan-binding proteins.

In Cell Chemical Biology on 15 April 2021 by Park, D. D., Chen, J., et al.

The pleiotropic functions of macrophages in immune defense, tissue repair, and maintenance of tissue homeostasis are supported by the heterogeneity in macrophage sub-populations that differ both in ontogeny and polarization. Although glycans and glycan-binding proteins (GBPs) are integral to macrophage function and may contribute to macrophage diversity, little is known about the factors governing their expression. Here, we provide a resource for characterizing the N-/O-glycomes of various murine peritoneal macrophage sub-populations, demonstrating that glycosylation primarily reflects developmental origin and, to a lesser degree, cellular polarization. Furthermore, comparative analysis of GBP-coding genes in resident and elicited macrophages indicated that GBP expression is consistent with specialized macrophage functions and correlates with specific types of displayed glycans. An integrated, semi-quantitative approach was used to confirm distinct expression patterns of glycans and their binding proteins across different macrophages. The data suggest that regulation of glycan-protein complexes may be central to macrophage residence and recruitment.
Copyright © 2020 Elsevier Ltd. All rights reserved.

  • Mus musculus (House mouse)

A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia.

In Cell Reports on 20 November 2018 by Baardman, J., Verberk, S. G. S., et al.

Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb