Product Citations: 4

Background and objectives: Composition of the peripheral blood (PB) cell populations and their activation state reflect the immune status of a patient. Rheumatoid arthritis (RA) is characterized by abnormal B- and T-cell functions. The objective of this study was to assess the profiles of the PB mononuclear cell (PBMC) populations in patients with rheumatoid and osteoarthritis (OA) in comparison with healthy control (HC) subjects in order to evaluate the PBMC profiles as a potential diagnostic characteristic in RA. The second aim was to assess the CCR1 and CCR2 expression on PB lymphocytes and correlate it with the plasma levels of matrix metallopeptidase 9 (MMP-9), IL-17F, TNF-α, IL-6, and IL-10. Materials and Methods: The frequency and phenotype, including CCR1 and CCR2, of the PBMC populations (monocytes, CD19+B cells, and T/NK lymphocytes) in RA (n = 15) and OA (n = 10) patients and HC (n = 12) were analyzed by five-color flow cytometry. DNA of the viruses, HHV-6, HHV-7, and B19, in the whole blood and cell-free plasma, were assessed by nested-polymerase chain reaction (PCR). Results: Active persistent or acute infections, caused by HHV-6, HHV-7, or B19, were not detected in patients of this study. Both CCR1 and CCR2 were determined on the PB B and T/NK lymphocytes in several RA and OA patients and HCs. However, in patients, the frequency of the CCR1-positive T/NK lymphocytes showed a weak negative correlation with the IL-10 level, while the frequency of the CCR2-positive B cells correlated positively with the level of IL-6. Statistically significant differences in the proportions of the CD19-positive and CD19-negative lymphocyte and monocyte subsets within the PBMC set were determined between RA and OA patients and HC adults. Conclusions: We have shown in our pilot study with rather small cohorts of patients that the PBMC-population profiles were very consistent, and statistically significantly differed between RA and OA patients and HC subjects.

  • Cardiovascular biology
  • Immunology and Microbiology

Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.

  • Immunology and Microbiology

Acute myeloid leukaemia (AML) cells show constitutive release of several chemokines that occurs in three major clusters: (I) chemokine (C-C motif) ligand (CCL)2-4/chemokine (C-X-C motif) ligand (CXCL)1/8, (II) CCL5/CXCL9-11 and (III) CCL13/17/22/24/CXCL5. Ingenol-3-angelate (PEP005) is an activator of protein kinase C and has antileukaemic and immunostimulatory effects in AML. We investigated primary AML cells derived from 35 unselected patients and determined that PEP005 caused a dose-dependent increase in the release of chemokines from clusters I and II, including several T cell chemotactic chemokines. The release of granulocyte-macrophage colony-stimulating factor and hepatocyte growth factor was also increased. CCL2-4/CXCL1/8 release correlated with nuclear factor (NF)-kappaB expression in untreated AML cells, and PEP005-induced chemokine production was associated with further increases in the expression of the NF-kappaB subunits p50, p52 and p65. Increased DNA binding of NF-kappaB was observed during exposure to PEP005, and the specific NF-kappaB inhibitor BMS-345541 reduced constitutive chemokine release even in the presence of PEP005. Finally, PEP005 decreased expression of stem cell markers (CD117, CXCR4) and increased lineage-associated CD11b and CD14 expression. To conclude, PEP005 has a unique functional pharmacological profile in human AML. Previous studies have described proapoptotic and T cell stimulatory effects and the present study describes additional T cell chemotactic and differentiation-inducing effects.

  • ICC-IF
  • Homo sapiens (Human)
  • Cardiovascular biology

Circulating T cells derived from acute leukemia patients with severe therapy-induced cytopenia express a wide range of chemokine receptors.

In Hematology (Amsterdam, Netherlands) on 1 December 2008 by Olsnes, A. M., Ersvaer, E., et al.

Normal T cells can mediate antileukemic reactivity after allogeneic stem cell transplantation and T cell targeting immunotherapy is now considered for patients receiving conventional chemotherapy. This antileukemic reactivity is most effective in patients with a low leukemia cell burden, and this burden is expected to be lowest early after transplantation/chemotherapy when patients are cytopenic. Local T cell recruitment will then be essential for the efficiency of the antileukemic response. In this context, the authors compared the chemokine receptor expression for T cells derived from healthy individuals and acute myelogenous leukemia patients with therapy-induced cytopenia after conventional chemotherapy or allogeneic stem cell transplantation. Circulating CD3(+) T cells showed the same chemokine receptor expression for all three groups: CCR1(low), CCR2(low), CCR3(low), CCR4(intermediate), CCR5(intermediate), CCR7(low/intermediate), CXCR2(low), CXCR3(intermediate), and CXCR4(high). Thus, only minor differences between the groups were observed when comparing individual receptors, and we therefore conclude that the chemokine receptor profiles of circulating CD3(+) T cells show no qualitative and only minor quantitative differences for these three groups.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb