Product Citations: 59

Key epigenetic and signaling factors in the formation and maintenance of the blood-brain barrier.

In eLife on 13 December 2024 by Sadanandan, J., Thomas, S., et al.

The blood-brain barrier (BBB) controls the movement of molecules into and out of the central nervous system (CNS). Since a functional BBB forms by mouse embryonic day E15.5, we reasoned that gene cohorts expressed in CNS endothelial cells (EC) at E13.5 contribute to BBB formation. In contrast, adult gene signatures reflect BBB maintenance mechanisms. Supporting this hypothesis, transcriptomic analysis revealed distinct cohorts of EC genes involved in BBB formation and maintenance. Here, we demonstrate that epigenetic regulator's histone deacetylase 2 (HDAC2) and polycomb repressive complex 2 (PRC2) control EC gene expression for BBB development and prevent Wnt/β-catenin (Wnt) target genes from being expressed in adult CNS ECs. Low Wnt activity during development modifies BBB genes epigenetically for the formation of functional BBB. As a Class-I HDAC inhibitor induces adult CNS ECs to regain Wnt activity and BBB genetic signatures that support BBB formation, our results inform strategies to promote BBB repair.
© 2023, Sadanandan, Thomas et al.

  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Genetics

ETV2 transcriptionally activates Rig1 gene expression and promotes reprogramming of the endothelial lineage.

In Scientific Reports on 19 November 2024 by Choi, Y. G., Ma, X., et al.

ETV2 is an essential transcription factor as Etv2 null murine embryos lack all vasculature, blood and are lethal early during embryogenesis. Previous studies have established that ETV2 functions as a pioneer factor and directly reprograms fibroblasts to endothelial cells. However, the underlying molecular mechanisms regulating this reprogramming process remain incompletely defined. In the present study, we examined the ETV2-RIG1 cascade as regulators that govern ETV2-mediated reprogramming. Mouse embryonic fibroblasts (MEFs) harboring an inducible ETV2 expression system were used to overexpress ETV2 and reprogram these somatic cells to the endothelial lineage. Single-cell RNA-seq from reprogrammed fibroblasts defined the induction of the transcriptional network involved in Rig1-like receptor signaling pathways. Studies using ChIP-seq, electrophoretic mobility shift assays, and transcriptional assays demonstrated that ETV2 was a direct upstream activator of Rig1 gene expression. We further demonstrated that the knockdown of Rig1 and separately, Nfκb1 using shRNA significantly reduced the efficiency of endothelial cell reprogramming. These results highlight that ETV2 reprograms fibroblasts to endothelial cells by directly activating RIG1. These findings extend our current understanding of the molecular mechanisms underlying ETV2-mediated reprogramming and will be important in the design of revascularization strategies for the treatment of ischemic tissues such as ischemic heart disease.
© 2024. The Author(s).

  • Mus musculus (House mouse)

 Increased adhesivity of red blood cells (RBCs) to endothelial cells (ECs) may contribute to organ dysfunction in malaria, sickle cell disease, and diabetes. RBCs normally export nitric oxide (NO)-derived vascular signals, facilitating blood flow. S-nitrosothiols (SNOs) are thiol adducts formed in RBCs from precursor NO upon the oxygenation-linked allosteric transition in hemoglobin. RBCs export these vasoregulatory SNOs on demand, thereby regulating regional blood flow and preventing RBC-EC adhesion, and the large (system L) neutral amino acid transporter 1 (LAT1; SLC7A5) appears to mediate SNO export by RBCs.
 To determine the role of LAT1-mediated SNO import by ECs generally and of LAT1-mediated SNO import by ECs in RBC SNO-dependent modulation of RBC sequestration and blood oxygenation in vivo, we engineered LAT1fl/fl; Cdh5-Cre+ mice, in which the putative SNO transporter LAT1 can be inducibly depleted (knocked down, KD) specifically in ECs ("LAT1ECKD").
 We show that LAT1 in mouse lung ECs mediates cellular SNO uptake. ECs from LAT1ECKD mice (tamoxifen-induced LAT1fl/fl; Cdh5-Cre+) import SNOs poorly ex vivo compared with ECs from wild-type (tamoxifen-treated LAT1fl/fl; Cdh5-Cre-) mice. In vivo, endothelial depletion of LAT1 increased RBC sequestration in the lung and decreased blood oxygenation after RBC transfusion.
 This is the first study showing a role for SNO transport by LAT1 in ECs in a genetic mouse model. We provide the first direct evidence for the coordination of RBC SNO export with EC SNO import via LAT1. SNO flux via LAT1 modulates RBC-EC sequestration in lungs after transfusion, and its disruption impairs blood oxygenation by the lung.
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology

Pseudouridylation plays a regulatory role in various physiological and pathological processes. A prime example is the mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA), characterized by defective pseudouridylation resulting from genetic mutations in pseudouridine synthase 1 (PUS1). However, the roles and mechanisms of pseudouridylation in normal erythropoiesis and MLASA-related anemia remain elusive. We established a mouse model carrying a point mutation (R110W) in the enzymatic domain of PUS1, mimicking the common mutation in human MLASA. Pus1-mutant mice exhibited anemia at 4 weeks old. Impaired mitochondrial oxidative phosphorylation was also observed in mutant erythroblasts. Mechanistically, mutant erythroblasts showed defective pseudouridylation of targeted tRNAs, altered tRNA profiles, decreased translation efficiency of ribosomal protein genes, and reduced globin synthesis, culminating in ineffective erythropoiesis. Our study thus provided direct evidence that pseudouridylation participates in erythropoiesis in vivo. We demonstrated the critical role of pseudouridylation in regulating tRNA homeostasis, cytoplasmic translation, and erythropoiesis.
© 2024 The Authors.

  • Biochemistry and Molecular biology
  • Cell Biology
  • Genetics

Stimulation of platelet P2Y1 receptors by different endogenous nucleotides leads to functional selectivity via biased signalling.

In British Journal of Pharmacology on 1 February 2024 by Arkless, K. L., Pan, D., et al.

Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis.
Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed.
Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP.
Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs.
This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
© 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  • Mus musculus (House mouse)
  • Pharmacology
View this product on CiteAb