Product Citations: 14

KLF12 transcriptionally regulates PD-L1 expression in non-small cell lung cancer.

In Molecular Oncology on 1 December 2023 by Pan, X., Zhang, W., et al.

Recent studies have pointed to the role of Krüpple-like factor 12 (KLF12) in cancer-associated processes, including cancer proliferation, apoptosis, and metastasis. However, the role of KLF12 in tumor immunity remains obscure. Here, we found that KLF12 expression was significantly higher in non-small cell lung cancer (NSCLC) cells with higher programmed death-ligand 1 (PD-L1) expression. Additionally, a positive correlation between KLF12 and PD-L1 was observed in clinical patient tumor tissues. By chromatin immunoprecipitation (ChIP) analysis, KLF12 was identified to bind to the CACCC motif of the PD-L1 promoter. Overexpression of KLF12 promoted PD-L1 transcription, whereas silencing of KLF12 inhibited PD-L1 transcription. Furthermore, signal transducer and activator of transcription 1 (STAT1)- and STAT3-triggered PD-L1 transcription was abolished in the absence of KLF12, and KLF12 knockdown weakened the binding of STAT1 and STAT3 to the PD-L1 promoter. Mechanistically, KLF12 physically interacted with P300, a histone acetyltransferase. In addition, KLF12 silencing reduced P300 binding to the PD-L1 promoter, which subsequently caused decreased acetylation of histone H3. PD-L1 transcription driven by KLF12 overexpression was eliminated by EP300 silencing. In immunocompetent mice, KLF12 knockout inhibited tumor growth and promoted infiltration of CD8+ T cells. However, this phenomenon was not observed in immunodeficient mice. Overall, this study reveals KLF12-mediated transcriptional regulation of PD-L1 in NSCLC; targeting KLF12 may be a potential therapeutic strategy for NSCLC.
© 2023 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  • Cancer Research

Co-transplantation of autologous Treg cells in a cell therapy for Parkinson's disease.

In Nature on 1 July 2023 by Park, T. Y., Jeon, J., et al.

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

  • Immunology and Microbiology
  • Neuroscience

With recent advances in immune checkpoint inhibitors (ICIs), immunotherapy has become the standard treatment for various malignant tumors. Their indications and dosages have been determined empirically, taking individually conducted clinical trials into consideration, but without a standard method to evaluate them. Here we establish an advanced imaging system to visualize human PD-1 microclusters, in which a minimal T cell receptor (TCR) signaling unit co-localizes with the inhibitory co-receptor PD-1 in vitro. In these microclusters PD-1 dephosphorylates both the TCR/CD3 complex and its downstream signaling molecules via the recruitment of a phosphatase, SHP2, upon stimulation with the ligand hPD-L1. In this system, blocking antibodies for hPD-1-hPD-L1 binding inhibits hPD-1 microcluster formation, and each therapeutic antibody (pembrolizumab, nivolumab, durvalumab and atezolizumab) is characterized by a proprietary optimal concentration and combinatorial efficiency enhancement. We propose that our imaging system could digitally evaluate PD-1-mediated T cell suppression to evaluate their clinical usefulness and to develop the most suitable combinations among ICIs or between ICIs and conventional cancer treatments.
© 2023. The Author(s).

Evaluation of therapeutic PD-1 antibodies by an advanced single-molecule imaging system for human PD-1 microclusters

Preprint on Research Square on 17 August 2022 by Nishi, W., Wakamatsu, E., et al.

With recent advances in immune checkpoint inhibitors (ICIs), cancer immunotherapy has become the standard treatment for various malignant tumors. Their indications and dosages have been determined on the basis of several clinical trials conducted separately. In this study, we have established an advanced imaging system to visualize “human PD-1 microclusters,” in which PD-1 actually dephosphorylates both the TCR/CD3 complex and its downstream signaling molecules via the recruitment of a phosphatase, SHP2. Furthermore, each antibody required its own concentration and gained much greater effects in combination with other antibodies against different targets. We propose that our imaging system could digitally evaluate the PD-1-mediated T cell suppression and practical effects of each ICI. Currently, numerous new ICIs are tested, and more suitable combinations of them with other ICIs or conventional cancer treatments are being explored. Our study will have a wide range of applications to clinical practice in the future.

IFN-γ Induces PD-L1 Expression in Primed Human Basophils.

In Cells on 25 February 2022 by Bonam, S. R., Chauvin, C., et al.

Programmed death-ligand 1 (PD-L1) plays a key role in maintaining immune tolerance and also in immune evasion of cancers and pathogens. Though the identity of stimuli that induce PD-L1 in various human innate cells and their function are relatively well studied, data on the basophils remain scarce. In this study, we have identified one of the factors, such as IFN-γ, that induces PD-L1 expression in human basophils. Interestingly, we found that basophil priming by IL-3 is indispensable for IFN-γ-induced PD-L1 expression in human basophils. However, priming by other cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP) was dispensable. Analyses of a published microarray data set on IL-3-treated basophils indicated that IL-3 enhances IFNGR2, one of the chains of the IFNGR heterodimer complex, and CD274, thus providing a mechanistic insight into the role of IL-3 priming in IFN-γ-induced PD-L1 expression in human basophils.

  • Cell Biology
View this product on CiteAb