Product Citations: 11

Mechanistic Role of Jak3 in Obesity-Associated Cognitive Impairments.

In Nutrients on 9 September 2022 by Kumar, P., Mishra, J., et al.

A compromise in intestinal mucosal functions is associated with several chronic inflammatory diseases. Previously, we reported that obese humans have a reduced expression of intestinal Janus kinase-3 (Jak3), a non-receptor tyrosine kinase, and a deficiency of Jak3 in mice led to predisposition to obesity-associated metabolic syndrome. Since meta-analyses show cognitive impairment as co-morbidity of obesity, the present study demonstrates the mechanistic role of Jak3 in obesity associated cognitive impairment. Our data show that high-fat diet (HFD) suppresses Jak3 expression both in intestinal mucosa and in the brain of wild-type mice.
Recapitulating these conditions using global (Jak3-KO) and intestinal epithelial cell-specific conditional (IEC-Jak3-KO) mice and using cognitive testing, western analysis, flow cytometry, immunofluorescence microscopy and 16s rRNA sequencing, we demonstrate that HFD-induced Jak3 deficiency is responsible for cognitive impairments in mice, and these are, in part, specifically due to intestinal epithelial deficiency of Jak3.
We reveal that Jak3 deficiency leads to gut dysbiosis, compromised TREM-2-functions-mediated activation of microglial cells, increased TLR-4 expression and HIF1-α-mediated inflammation in the brain. Together, these lead to compromised microglial-functions-mediated increased deposition of β-amyloid (Aβ) and hyperphosphorylated Tau (pTau), which are responsible for cognitive impairments. Collectively, these data illustrate how the drivers of obesity promote cognitive impairment and demonstrate the underlying mechanism where HFD-mediated impact on IEC-Jak3 deficiency is responsible for Jak3 deficiency in the brain, reduced microglial TREM2 expression, microglial activation and compromised clearance of Aβ and pTau as the mechanism during obesity-associated cognitive impairments.
Thus, we not only demonstrate the mechanism of obesity-associated cognitive impairments but also characterize the tissue-specific role of Jak3 in such conditions through mucosal tolerance, gut-brain axis and regulation of microglial functions.

  • FC/FACS
  • Mus musculus (House mouse)
  • Neuroscience

Preclinical safety and efficacy of lentiviral-mediated gene therapy for leukocyte adhesion deficiency type I.

In Molecular Therapy. Methods Clinical Development on 8 September 2022 by Mesa-Nuñez, C., Damián, C., et al.

Leukocyte adhesion deficiency type I (LAD-I) is a primary immunodeficiency caused by mutations in the ITGB2 gene, which encodes for the CD18 subunit of β2-integrins. Deficient expression of β2-integrins results in impaired neutrophil migration in response to bacterial and fungal infections. Using a lentiviral vector (LV) that mediates a preferential myeloid expression of human CD18 (Chim.hCD18-LV), we first demonstrated that gene therapy efficiently corrected the phenotype of mice with severe LAD-I. Next, we investigated if the ectopic hCD18 expression modified the phenotypic characteristics of human healthy donor hematopoietic stem cells and their progeny. Significantly, transduction of healthy CD34+ cells with the Chim.hCD18-LV did not modify the membrane expression of CD18 nor the adhesion of physiological ligands to transduced cells. Additionally, we observed that the repopulating properties of healthy CD34+ cells were preserved following transduction with the Chim.hCD18-LV, and that a safe polyclonal repopulation pattern was observed in transplanted immunodeficient NOD scid gamma (NSG) mice. In a final set of experiments, we demonstrated that transduction of CD34+ cells from a severe LAD-I patient with the Chim.hCD18-LV restores the expression of β2-integrins in these cells. These results offer additional preclinical safety and efficacy evidence supporting the gene therapy of patients with severe LAD-I.
© 2022.

  • FC/FACS
  • Mus musculus (House mouse)

Reversible epigenetic alterations regulate class I HLA loss in prostate cancer.

In Communications Biology on 1 September 2022 by Rodems, T. S., Heninger, E., et al.

Downregulation of HLA class I (HLA-I) impairs immune recognition and surveillance in prostate cancer and may underlie the ineffectiveness of checkpoint blockade. However, the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully explored. Here, we conducted a comprehensive analysis of HLA-I genomic, epigenomic and gene expression alterations in primary and metastatic human prostate cancer. Loss of HLA-I gene expression was associated with repressive chromatin states including DNA methylation, histone H3 tri-methylation at lysine 27, and reduced chromatin accessibility. Pharmacological DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition decreased DNA methylation and increased H3 lysine 27 acetylation and resulted in re-expression of HLA-I on the surface of tumor cells. Re-expression of HLA-I on LNCaP cells by DNMT and HDAC inhibition increased activation of co-cultured prostate specific membrane antigen (PSMA)27-38-specific CD8+ T-cells. HLA-I expression is epigenetically regulated by functionally reversible DNA methylation and chromatin modifications in human prostate cancer. Methylated HLA-I was detected in HLA-Ilow circulating tumor cells (CTCs), which may serve as a minimally invasive biomarker for identifying patients who would benefit from epigenetic targeted therapies.
© 2022. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Genetics

Reversible Epigenetic Alterations Regulate Class I HLA Loss in Prostate Cancer

Preprint on Research Square on 11 November 2021 by Rodems, T., Henninger, E., et al.

Downregulation of HLA class I (HLA-I) impairs immune recognition and surveillance in prostate cancer and may underlie the ineffectiveness of checkpoint blockade. However, the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully explored. Here, we conducted a comprehensive analysis of HLA-I genomic, epigenomic and gene expression alterations in primary and metastatic human prostate cancer. Loss of HLA-I gene expression was associated with repressive chromatin states including DNA methylation, histone H3 tri-methylation at lysine 27, and reduced chromatin accessibility. Pharmacological DNMT and HDAC inhibition decreased DNA methylation and increased H3 lysine 27 acetylation and resulted in re-expression of HLA-I on the surface of tumor cells. Re-expression of HLA-I on LNCaP cells by DNMT and HDAC inhibition increased activation of co-cultured PSMA27-38-specific CD8+ T-cells. Methylated HLA-I was detected in HLA-Ilow circulating tumor cells (CTCs), which may serve as a biomarker for identifying patients who would benefit from epigenetic targeted therapies.

  • Cancer Research
  • Genetics

Transcriptional signature in microglia associated with Aβ plaque phagocytosis.

In Nature Communications on 21 May 2021 by Grubman, A., Choo, X. Y., et al.

The role of microglia cells in Alzheimer's disease (AD) is well recognized, however their molecular and functional diversity remain unclear. Here, we isolated amyloid plaque-containing (using labelling with methoxy-XO4, XO4+) and non-containing (XO4-) microglia from an AD mouse model. Transcriptomics analysis identified different transcriptional trajectories in ageing and AD mice. XO4+ microglial transcriptomes demonstrated dysregulated expression of genes associated with late onset AD. We further showed that the transcriptional program associated with XO4+ microglia from mice is present in a subset of human microglia isolated from brains of individuals with AD. XO4- microglia displayed transcriptional signatures associated with accelerated ageing and contained more intracellular post-synaptic material than XO4+ microglia, despite reduced active synaptosome phagocytosis. We identified HIF1α as potentially regulating synaptosome phagocytosis in vitro using primary human microglia, and BV2 mouse microglial cells. Together, these findings provide insight into molecular mechanisms underpinning the functional diversity of microglia in AD.

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Neuroscience
View this product on CiteAb