Product Citations: 24

The matricellular protein Fibulin-5 regulates β-cell proliferation in an autocrine/paracrine manner.

In IScience on 21 February 2025 by Okuyama, T., Tsuno, T., et al.

The matricellular protein Fibulin-5 (Fbln5) is a secreted protein that is essential for elastic fiber formation, and pancreatic islets are usually surrounded by the extracellular matrix (ECM), which includes elastic fibers. However, much uncertainty remains regarding the function of the ECM and its components in β-cells. Here, we describe the role of Fbln5 in β-cell replication. Fbln5 expression was increased upon glucose stimulation in β-cells of mouse and human islets. β-Cell-specific Fbln5-knockout (βFbln5KO) mice exhibit significantly reduced β-cell proliferation in vivo but not in vitro. Secreted extracellular Fbln5 enhances β-cell replication. Fbln5-deficient β-cells exhibit the downregulated expression of the gene encoding Polo-like kinase 1 (PLK1), which is accompanied by ERK-mediated FoxM1 nuclear export. These data suggest that Fbln5 is secreted from β-cells in response to glucose and plays important roles in the appropriate maintenance of β-cell functions in an autocrine or paracrine manner.© 2025 The Author(s).

  • Endocrinology and Physiology

Mitochondria-ER contact sites expand during mitosis.

In IScience on 19 April 2024 by Yu, F., Courjaret, R., et al.

Mitochondria-ER contact sites (MERCS) are involved in energy homeostasis, redox and Ca2+ signaling, and inflammation. MERCS are heavily studied; however, little is known about their regulation during mitosis. Here, we show that MERCS expand during mitosis in three cell types using various approaches, including transmission electron microscopy, serial EM coupled to 3D reconstruction, and a split GFP MERCS marker. We further show enhanced Ca2+ transfer between the ER and mitochondria using either direct Ca2+ measurements or by quantifying the activity of Ca2+-dependent mitochondrial dehydrogenases. Collectively, our results support a lengthening of MERCS in mitosis that is associated with improved Ca2+ coupling between the two organelles. This augmented Ca2+ coupling could be important to support the increased energy needs of the cell during mitosis.
© 2024 The Authors.

  • Cell Biology

A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in pancreatic cancer cells

Preprint on BioRxiv : the Preprint Server for Biology on 15 February 2024 by Mondal, P., Alyateem, G., et al.

Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.

  • Cancer Research

Clinical and molecular evidence indicates that high-grade serous ovarian cancer (HGSOC) primarily originates from the fallopian tube, not the ovarian surface. However, the reasons for this preference remain unclear. Our study highlights significant differences between fallopian tube epithelial (FTE) and ovarian surface epithelial (OSE) cells, providing the molecular basis for FTEs as site of origin of HGSOC. FTEs, unlike OSEs, exhibit heightened replication stress (RS), impaired repair of stalled forks, ineffective G2/M checkpoint, and increased tumorigenicity. BRCA1 heterozygosity exacerbates these defects, resulting in RS suppression haploinsufficiency and an aggressive tumor phenotype. Examination of human and mouse sections reveals buildup of the RS marker 53BP1 primarily in the fallopian tubes, particularly at the fimbrial ends. Furthermore, menopausal status influences RS levels. Our study provides a mechanistic rationale for FTE as the site of origin for HGSOC, investigates the impact of BRCA1 heterozygosity, and lays the groundwork for targeting early HGSOC drivers.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • Cancer Research

Pathogenic LRRK2 regulates centrosome cohesion via Rab10/RILPL1-mediated CDK5RAP2 displacement.

In IScience on 17 June 2022 by Fdez, E., Madero-Pérez, J., et al.

Mutations in LRRK2 increase its kinase activity and cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab proteins which allows for their binding to RILPL1. The phospho-Rab/RILPL1 interaction causes deficits in ciliogenesis and interferes with the cohesion of duplicated centrosomes. We show here that centrosomal deficits mediated by pathogenic LRRK2 can also be observed in patient-derived iPS cells, and we have used transiently transfected cell lines to identify the underlying mechanism. The LRRK2-mediated centrosomal cohesion deficits are dependent on both the GTP conformation and phosphorylation status of the Rab proteins. Pathogenic LRRK2 does not displace proteinaceous linker proteins which hold duplicated centrosomes together, but causes the centrosomal displacement of CDK5RAP2, a protein critical for centrosome cohesion. The LRRK2-mediated centrosomal displacement of CDK5RAP2 requires RILPL1 and phospho-Rab proteins, which stably associate with centrosomes. These data provide fundamental information as to how pathogenic LRRK2 alters the normal physiology of a cell.
© 2022 The Author(s).

  • FC/FACS
  • Cell Biology
View this product on CiteAb