Product Citations: 5

Spatial microniches of IL-2 synergize with IL-10 to drive lung migratory Th2 cells in response to inhaled allergen

Preprint on Research Square on 24 October 2023 by Poholek, A., He, K., et al.

The mechanisms that guide Th2 cell differentiation in barrier tissues are unclear. Using temporal, spatial and single cell transcriptomic tracking of house dust mite (HDM) specific T cells, we describe the molecular pathways driving allergen specific Th2 cells. Differentiation and migration of lung allergen-specific Th2 cells requires early expression of the transcriptional repressor Blimp-1. Loss of Blimp-1 during priming in the lymph node ablated the formation of Th2 cells that migrate to the lung, indicating early Blimp-1 promotes the population of Th2 cells with migratory capability. Blimp-1 occurs in a subset of lymph node CD4 T cells that requires IL-10 from allergen-specific T cells. Furthermore, IL-2/STAT5 signals are essential for both Blimp-1 and GATA3 upregulation through repression of Bcl6 and Bach2 in the lymph node. Spatial microniches of IL-2 in the lymph node identified by the latent factor discovery method SLIDE discriminate and support the earliest Blimp-1+ migratory Th2 cells, demonstrating that lymph node localization is a primary driver of Th2 initiation. Our findings illuminate the molecular pathways for inhaled allergens to promote Th2 cells and identify an early requirement for IL-2 mediated spatial microniches that synergize with allergen-driven IL-10 from responding T cells to drive allergic asthma

  • FC/FACS
  • Mus musculus (House mouse)

Intestinal nematode parasites can cross the epithelial barrier, causing tissue damage and release of danger-associated molecular patterns (DAMPs) that may promote host protective type 2 immunity. We investigate whether adenosine binding to the A2B adenosine receptor (A2BAR) on intestinal epithelial cells (IECs) plays an important role. Specific blockade of IEC A2BAR inhibits the host protective memory response to the enteric helminth, Heligmosomoides polygyrus bakeri (Hpb), including disruption of granuloma development at the host-parasite interface. Memory T cell development is blocked during the primary response, and transcriptional analyses reveal profound impairment of IEC activation. Extracellular ATP is visualized 24 h after inoculation and is shown in CD39-deficient mice to be critical for the adenosine production mediating the initiation of type 2 immunity. Our studies indicate a potent adenosine-mediated IEC pathway that, along with the tuft cell circuit, is critical for the activation of type 2 immunity.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology

Efferocytosis, or phagocytic clearance of dead/dying cells by brain-resident microglia and/or infiltrating macrophages, is instrumental for inflammation resolution and restoration of brain homeostasis after stroke. Here, we identify the signal transducer and activator of transcription 6/arginase1 (STAT6/Arg1) signaling axis as a potentially novel mechanism that orchestrates microglia/macrophage responses in the ischemic brain. Activation of STAT6 was observed in microglia/macrophages in the ischemic territory in a mouse model of stroke and in stroke patients. STAT6 deficiency resulted in reduced clearance of dead/dying neurons, increased inflammatory gene signature in microglia/macrophages, and enlarged infarct volume early after experimental stroke. All of these pathological changes culminated in an increased brain tissue loss and exacerbated long-term functional deficits. Combined in vivo analyses using BM chimeras and in vitro experiments using microglia/macrophage-neuron cocultures confirmed that STAT6 activation in both microglia and macrophages was essential for neuroprotection. Adoptive transfer of WT macrophages into STAT6-KO mice reduced accumulation of dead neurons in the ischemic territory and ameliorated brain infarction. Furthermore, decreased expression of Arg1 in STAT6-/- microglia/macrophages was responsible for impairments in efferocytosis and loss of antiinflammatory modality. Our study suggests that efferocytosis via STAT6/Arg1 modulates microglia/macrophage phenotype, accelerates inflammation resolution, and improves stroke outcomes.

  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Immunology and Microbiology
  • Neuroscience

Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk.

In Nature Immunology on 1 May 2017 by Piccolo, V., Curina, A., et al.

Stimulation of macrophages with interferon-γ (IFN-γ) and interleukin 4 (IL-4) triggers distinct and opposing activation programs. During mixed infections or cancer, macrophages are often exposed to both cytokines, but how these two programs influence each other remains unclear. We found that IFN-γ and IL-4 mutually inhibited the epigenomic and transcriptional changes induced by each cytokine alone. Computational and functional analyses revealed the genomic bases for gene-specific cross-repression. For instance, while binding motifs for the transcription factors STAT1 and IRF1 were associated with robust and IL-4-resistant responses to IFN-γ, their coexistence with binding sites for auxiliary transcription factors such as AP-1 generated vulnerability to IL-4-mediated inhibition. These data provide a core mechanistic framework for the integration of signals that control macrophage activation in complex environmental conditions.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Th2 signals induce epithelial injury in mice and are compatible with the biliary atresia phenotype.

In The Journal of Clinical Investigation on 1 November 2011 by Li, J., Bessho, K., et al.

Biliary atresia (BA) is a destructive cholangiopathy of childhood in which Th1 immunity has been mechanistically linked to the bile duct inflammation and obstruction that culminate in liver injury. Based on reports of decreased Th1 cytokines in some patients and the development of BA in mice lacking CD4+ T cells, we hypothesized that Th1-independent mechanisms can also activate effector cells and induce BA. Here, we tested this hypothesis using Stat1-/- mice, which lack the ability to mount Th1 immune responses. Infection of Stat1-/- mice with rhesus rotavirus type A (RRV) on postnatal day 1 induced a prominent Th2 response, duct epithelial injury and obstruction within 7 days, and atresia shortly thereafter. A high degree of phosphorylation of the Th2 transcription factor Stat6 was observed; however, concurrent inactivation of Stat1 and Stat6 in mice did not prevent BA after RRV infection. In contrast, depletion of macrophages or combined loss of Il13 and Stat1 reduced tissue infiltration by lymphocytes and myeloid cells, maintained epithelial integrity, and prevented duct obstruction. In concordance with our mouse model, humans at the time of BA diagnosis exhibited differential hepatic expression of Th2 genes and serum Th2 cytokines. These findings demonstrate compatibility between Th2 commitment and the pathogenesis of BA, and suggest that patient subgrouping in future clinical trials should account for differences in Th2 status.

View this product on CiteAb