Product Citations: 3

Human herpesvirus 8 (HHV-8) encodes four viral interferon regulatory factors (vIRFs) that target cellular IRFs and/or other innate-immune and stress signaling regulators and suppress the cellular response to viral infection and replication. For vIRF-1, cellular protein targets include IRFs, p53, p53-activating ATM kinase, BH3-only proteins, and antiviral signaling effectors MAVS and STING; vIRF-1 inhibits each, with demonstrated or likely promotion of HHV-8 de novo infection and productive replication. Here, we identify direct interactions of vIRF-1 with STAT3 and STAT-activating Janus kinase TYK2 (the latter reported previously by us to be inhibited by vIRF-1) and suppression by vIRF-1 of cytokine-induced STAT3 activation. Suppression of active, phosphorylated STAT3 (pSTAT3) by vIRF-1 was evident in transfected cells and vIRF-1 ablation in lytically-reactivated recombinant-HHV-8-infected cells led to increased levels of pSTAT3. Using a panel of vIRF-1 deletion variants, regions of vIRF-1 required for interactions with STAT3 and TYK2 were identified, which enabled correlation of STAT3 signaling inhibition by vIRF-1 with TYK2 binding, independently of STAT3 interaction. A viral mutant expressing vIRF-1 deletion-variant Δ198-222 refractory for TYK2 interaction and pSTAT3 suppression was severely compromised for productive replication. Conversely, expression of phosphatase-resistant, protractedly-active STAT3 led to impaired HHV-8 replication. Cells infected with HHV-8 mutants expressing STAT3-refractory vIRF-1 deletion variants or depleted of STAT3 displayed reduced vIRF-1 expression, while custom-peptide-promoted STAT3 interaction could effect increased vIRF-1 expression and enhanced virus replication. Taken together, our data identify vIRF-1 targeting and inhibition of TYK2 as a mechanism of STAT3-signaling suppression and critical for HHV-8 productive replication, the importance of specific pSTAT3 levels for replication, positive roles of STAT3 and vIRF-1-STAT3 interaction in vIRF-1 expression, and significant contributions to lytic replication of STAT3 targeting by vIRF-1.
Copyright: © 2023 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility.

In Brain on 1 March 2011 by Couturier, N., Bucciarelli, F., et al.

The tyrosine kinase 2 variant rs34536443 has been established as a genetic risk factor for multiple sclerosis in a variety of populations. However, the functional effect of this variant on disease pathogenesis remains unclear. This study replicated the genetic association of tyrosine kinase 2 with multiple sclerosis in a cohort of 1366 French patients and 1802 controls. Furthermore, we assessed the functional consequences of this polymorphism on human T lymphocytes by comparing the reactivity and cytokine profile of T lymphocytes isolated from individuals expressing the protective TYK2(GC) genotype with the disease-associated TYK2(GG) genotype. Our results demonstrate that the protective C allele infers decreased tyrosine kinase 2 activity, and this reduction of activity is associated with a shift in the cytokine profile favouring the secretion of Th2 cytokines. These findings suggest that the rs34536443 variant effect on multiple sclerosis susceptibility might be mediated by deviating T lymphocyte differentiation toward a Th2 phenotype. This impact of tyrosine kinase 2 on effector differentiation is likely to be of wider importance because other autoimmune diseases also have been associated with polymorphisms within tyrosine kinase 2. The modulation of tyrosine kinase 2 activity might therefore represent a new therapeutic approach for the treatment of autoimmune diseases.

  • Neuroscience

IL-11 expressed by endometrial stromal cells is crucial for normal pregnancy. IL-11 receptor alpha (IL-11Ralpha) null mice are infertile due to abnormal development of the placenta. In these mice, the mesometrial decidual tissue, which is the site of trophoblast invasion, thins and disappears at mid-pregnancy. Degeneration of the decidua is accompanied by uncontrolled trophoblast invasion. In this report, we show, using IL-11Ralpha null mice, that a defect in IL-11 signaling in the decidua leads to severe down-regulation of alpha(2)-macroglobulin (alpha(2)-MG), a metalloproteinase inhibitor crucial for limiting trophoblast invasion. We also present evidence, using uterine stromal cells that decidualize in culture, that IL-11 robustly stimulates the endogenous alpha(2)-MG expression and enhances alpha(2)-MG promoter activity. Serial 5' deletion and internal deletion of the promoter reveal two important signal transducer and activator of transcription (Stat) binding sites. Mutation of either one of these motifs decreases IL-11 stimulation, whereas double mutation prevents IL-11 action. We also found that IL-11 activates Janus kinase 2 (Jak2) and induces rapid phosphorylation, nuclear translocation, and promoter binding activity of Stat3 in decidual cells, whereas Jak1, Tyk2, and Stat5 activities are not affected. In addition, Jak2 inhibitor totally prevents alpha(2)-MG expression in decidual cells. Taken together, results of this investigation provide, at least in part, an explanation for the overinvasiveness of the trophoblast in IL-11Ralpha null mice and reveal, for the first time, that IL-11 signals through the Jak2/Stat3 pathway in decidual cells to stimulate the expression of alpha(2)-MG, a protease inhibitor essential for normal placentation in pregnancy.

  • Biochemistry and Molecular biology
  • Endocrinology and Physiology
View this product on CiteAb