Product Citations: 5

High-dimensional functional phenotyping of preclinical human CAR T cells using mass cytometry.

In STAR Protocols on 18 March 2022 by Michelozzi, I. M., Sufi, J., et al.

Here, we present a comprehensive protocol for the generation and functional characterization of chimeric antigen receptor (CAR) T cells and their products by mass cytometry in a reproducible and scalable manner. We describe the production of CAR T cells from human peripheral blood mononuclear cells. We then detail a three-step staining protocol with metal-labeled antibodies and the subsequent mass cytometry analysis. This protocol allows simultaneous characterization of CAR T cell intracellular signaling, activation, proliferation, cytokine production, and phenotype in a single assay.
© 2022 The Author(s).

  • Homo sapiens (Human)
  • Immunology and Microbiology

Multiplexed single-cell analysis of organoid signaling networks.

In Nature Protocols on 1 October 2021 by Sufi, J., Qin, X., et al.

Organoids are biomimetic tissue models comprising multiple cell types and cell states. Post-translational modification (PTM) signaling networks control cellular phenotypes and are frequently dysregulated in diseases such as cancer. Although signaling networks vary across cell types, there are limited techniques to study cell type-specific PTMs in heterocellular organoids. Here, we present a multiplexed mass cytometry (MC) protocol for single-cell analysis of PTM signaling and cell states in organoids and organoids co-cultured with fibroblasts and leukocytes. We describe how thiol-reactive organoid barcoding in situ (TOBis) enables 35-plex and 126-plex single-cell comparison of organoid cultures and provide a cytometry by time of flight (CyTOF) signaling analysis pipeline (CyGNAL) for computing cell type-specific PTM signaling networks. The TOBis MC protocol takes ~3 d from organoid fixation to data acquisition and can generate single-cell data for >40 antibodies from millions of cells across 126 organoid cultures in a single MC run.
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity.

In Cancer Cell on 13 September 2021 by Hutton, C., Heider, F., et al.

Fibroblasts display extensive transcriptional heterogeneity, yet functional annotation and characterization of their heterocellular relationships remains incomplete. Using mass cytometry, we chart the stromal composition of 18 murine tissues and 5 spontaneous tumor models, with an emphasis on mesenchymal phenotypes. This analysis reveals extensive stromal heterogeneity across tissues and tumors, and identifies coordinated relationships between mesenchymal and immune cell subsets in pancreatic ductal adenocarcinoma. Expression of CD105 demarks two stable and functionally distinct pancreatic fibroblast lineages, which are also identified in murine and human healthy tissues and tumors. Whereas CD105-positive pancreatic fibroblasts are permissive for tumor growth in vivo, CD105-negative fibroblasts are highly tumor suppressive. This restrictive effect is entirely dependent on functional adaptive immunity. Collectively, these results reveal two functionally distinct pancreatic fibroblast lineages and highlight the importance of mesenchymal and immune cell interactions in restricting tumor growth.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

  • WB
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

  • CyTOF
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cancer Research

Cystic fibrosis (CF) is due to a folding defect in the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, ΔF508, prevents CFTR from trafficking to the apical plasma membrane. Here we show that activation of the PDK1/SGK1 signaling pathway with C4-ceramide (C4-CER), a non-toxic small molecule, functionally corrects the trafficking defect in both cultured CF cells and primary epithelial cell explants from CF patients. The mechanism of C4-CER action involves a series of mutual autophosphorylation and phosphorylation events between PDK1 and SGK1. Detailed mechanistic studies indicate that C4-CER initially induces autophosphorylation of SGK1 at Ser(422). SGK1[Ser(P)(422)] and C4-CER coincidently bind PDK1 and permit PDK1 to autophosphorylate at Ser(241). Then PDK1[Ser(P)(241)] phosphorylates SGK1[Ser(P)(422)] at Thr(256) to generate fully activated SGK1[Ser(422), Thr(P)(256)]. SGK1[Ser(P)(422),Thr(P)(256)] phosphorylates and inactivates the E3 ubiquitin ligase Nedd4-2. ΔF508-CFTR is thus free to traffic to the plasma membrane. Importantly, C4-CER-mediated activation of both PDK1 and SGK1 is independent of the PI3K/Akt/mammalian target of rapamycin signaling pathway. Physiologically, C4-CER significantly increases maturation and stability of ΔF508-CFTR (t½ ∼10 h), enhances cAMP-activated chloride secretion, and suppresses hypersecretion of interleukin-8 (IL-8). We suggest that candidate drugs for CF directed against the PDK1/SGK1 signaling pathway, such as C4-CER, provide a novel therapeutic strategy for a life-limiting disorder that affects one child, on average, each day.
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  • Biochemistry and Molecular biology
View this product on CiteAb