Product Citations: 23

Immunomodulatory effects of a cell processing device to ameliorate dysregulated hyperinflammatory disease states.

In Scientific Reports on 3 June 2024 by Westover, A. J., Humes, H. D., et al.

Cell directed therapy is an evolving therapeutic approach to treat organ dysfunction arising from hyperinflammation and cytokine storm by processing immune cells in an extracorporeal circuit. To investigate the mechanism of action of the Selective Cytopheretic Device (SCD), in vitro blood circuits were utilized to interrogate several aspects of the immunomodulatory therapy. SCD immunomodulatory activity is due to its effects on circulating neutrophils and monocytes in a low ionized calcium (iCa, Ca2+) blood circuit. Activated neutrophils adhere to the SCD fibers and degranulate with release of the constituents of their exocytotic vesicles. Adhered neutrophils in the low iCa environment display characteristics of apoptotic senescence. These neutrophils are subsequently released and returned back to circulation, demonstrating a clear potential for in vivo feedback. For monocytes, SCD treatment results in the selective adhesion of more pro-inflammatory subsets of the circulating monocyte pool, as demonstrated by both cell surface markers and cytokine secretory rates. Once bound, over time a subset of monocytes are released from the membrane with a less inflammatory functional phenotype. Similar methods to interrogate mechanism in vitro have been used to preliminarily confirm comparable findings in vivo. Therefore, the progressive amelioration of circulating leukocyte activation and immunomodulation of excessive inflammation observed in SCD clinical trials to date is likely due to this continuous autologous leukocyte processing.
© 2024. The Author(s).

HIV vaccine candidate efficacy in female macaques mediated by cAMP-dependent efferocytosis and V2-specific ADCC.

In Nature Communications on 2 February 2023 by Bissa, M., Kim, S., et al.

The development of an effective vaccine to protect against HIV acquisition will be greatly bolstered by in-depth understanding of the innate and adaptive responses to vaccination. We report here that the efficacy of DNA/ALVAC/gp120/alum vaccines, based on V2-specific antibodies mediating apoptosis of infected cells (V2-ADCC), is complemented by efferocytosis, a cyclic AMP (cAMP)-dependent antiphlogistic engulfment of apoptotic cells by CD14+ monocytes. Central to vaccine efficacy is the engagement of the CCL2/CCR2 axis and tolerogenic dendritic cells producing IL-10 (DC-10). Epigenetic reprogramming in CD14+ cells of the cyclic AMP/CREB pathway and increased systemic levels of miRNA-139-5p, a negative regulator of expression of the cAMP-specific phosphodiesterase PDE4D, correlated with vaccine efficacy. These data posit that efferocytosis, through the prompt and effective removal of apoptotic infected cells, contributes to vaccine efficacy by decreasing inflammation and maintaining tissue homeostasis.
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • FC/FACS
  • Immunology and Microbiology

Atheroprotective mechanism by which folic acid regulates monocyte subsets and function through DNA methylation.

In Clinical Epigenetics on 28 February 2022 by Xiang, Y., Liang, B., et al.

Recent studies have suggested that folic acid can restore abnormal DNA methylation and monocyte subset shifts caused by hyperhomocysteinemia (HHcy) and hyperlipidemia (HL). However, the exact mechanism of action is still not fully understood. In this study, we further investigated the reversal effect and underlying mechanism of folic acid on the shift in monocyte subsets induced by aberrant lipids and Hcy metabolism via DNA methylation in vitro and in vivo.
Our results showed that intermediate monocytes were significantly increased but had the lowest global 5-methylcytosine (5-mC) levels in coronary artery disease (CAD) patients, which might lead to a decrease in the global 5-mC levels of peripheral blood leukocytes (PBLs). We also discovered that ARID5B might mediate the increased proportion of intermediate monocytes, as this factor was related to the proportion of monocyte subsets and the expression of CCR2. The expression of ARID5B was inversely associated with the hypermethylated cg25953130 CpG site, which was induced by HL and HHcy. ARID5B could also regulate monocyte CCR2, MCP-1, and TNF-α expression, adhesion and migration, macrophage polarization, and monocyte/macrophage apoptosis, which might explain the regulatory effect of ARID5B on monocyte subset shifting. Folic acid reversed HL- and HHcy-mediated aberrant global and cg25953130 DNA methylation, reduced the proportion of intermediate monocytes, and inhibited the formation of atherosclerotic plaques.
Folic acid plays a protective role against atherosclerosis through the regulation of DNA methylation, ARID5B expression, and monocyte subsets.
© 2022. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Homo sapiens (Human)
  • Genetics

Remote ischemic preconditioning (RIPC) protects the heart against myocardial ischemia/reperfusion (I/R) injury and recent work also suggested chronic remote ischemic conditioning (cRIPC) for cardiovascular protection. Based on current knowledge that systemic immunomodulatory effects of RIPC and the anti-inflammatory capacity of monocytes might be involved in cardiovascular protection, the aim of our study was to evaluate whether RIPC/cRIPC blood plasma is able to induce in-vitro angiogenesis, identify responsible factors and evaluate the effects of RIPC/cRIPC on cell surface characteristics of circulating monocytes. Eleven healthy volunteers were subjected to RIPC/cRIPC using a blood pressure cuff inflated to > 200 mmHg for 3 × 5 min on the upper arm. Plasma and peripheral blood monocytes were isolated before RIPC (Control), after 1 × RIPC (RIPC) and at the end of 1 week of daily RIPC (cRIPC) treatment. Plasma concentrations of potentially pro-angiogenic humoral factors (CXCL5, Growth hormone, IGFBP3, IL-1α, IL-6, Angiopoietin 2, VEGF, PECAM-1, sTie-2, IL-8, MCSF) were measured using custom made multiplex ELISA systems. Tube formation assays for evaluation of in-vitro angiogenesis were performed with donor plasma, monocyte conditioned culture media as well as IL-1α, CXCL5 and Growth hormone. The presence of CD14, CD16, Tie-2 and CCR2 was analyzed on monocytes by flow cytometry. Employing in-vitro tube formation assays, several parameters of angiogenesis were significantly increased by cRIPC plasma (number of nodes, P < 0.05; number of master junctions, P < 0.05; number of segments, P < 0.05) but were not influenced by culture medium from RIPC/cRIPC treated monocytes. While RIPC/cRIPC treatment did not lead to significant changes of the median plasma concentrations of any of the selected potentially pro-angiogenic humoral factors, in-depth analysis of the individual subjects revealed differences in plasma levels of IL-1α, CXCL5 and Growth hormone after RIPC/cRIPC treatment in some of the volunteers. Nevertheless, the positive effects of RIPC/cRIPC plasma on in-vitro angiogenesis could not be mimicked by the addition of the respective humoral factors alone or in combination. While monocyte conditioned culture media did not affect in-vitro tube formation, flow cytometry analyses of circulating monocytes revealed a significant increase in the number of Tie-2 positive and a decrease of CCR2 positive monocytes after RIPC/cRIPC (Tie-2: cRIPC, P < 0.05; CCR2: RIPC P < 0.01). Cardiovascular protection may be mediated by RIPC and cRIPC via a regulation of plasma cytokines as well as changes in cell surface characteristics of monocytes (e.g. Tie-2). Our results suggest that a combination of humoral and cellular factors could be responsible for the RIPC/cRIPC mediated effects and that interindividual variations seem to play a considerable part in the RIPC/cRIPC associated mechanisms.
© 2021. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology

Flow cytometry is a powerful method, widely used to identify cell types present in tissues, to describe their phenotypes, and to purify cells for functional analyses. As a single cell technique, flow cytometry relies on identifying and excluding cell doublets and aggregates present in samples in the initial gating steps. This identification is based on detection of events generating electrical pulses falling outside of linear variations of pulse height, width, and area in a singlet population with increasing cell sizes. In heterogeneous cell mixtures, however, with cell types varying extensively in size and granularity, exclusion of doublets has the risk of removing single cells that co-localize with doublets of another cell type. This is particularly the case when doublets of a smaller cell type overlap with large cells of a distinct, larger cell type. Here, we describe a gating method to reduce this risk. In this protocol, initial gating steps aim to segregate cells according to physical characteristics (such as size and granularity) and gene expression properties in order to obtain more homogeneous cell clusters. Doublet exclusion is then performed separately in each cluster, minimizing the risk of confusion between single cells and doublets. To illustrate this protocol, human blood monocytes are separated and analyzed. By implementing this protocol, we were able to reveal the existence of a population of large monocytes previously unrecognized using conventional gating strategies. In subsequent functional assays, we have shown that this novel population exhibits unique inflammatory responses, highlighting the need and pertinence of this approach to identify and characterize infrequent-yet functionally relevant-cell populations present in complex cell mixtures. © 2021 Wiley Periodicals LLC. Basic Protocol: Distinguishing single cells from doublets in heterogeneous cell mixtures by flow cytometry.
© 2021 Wiley Periodicals LLC.

  • Homo sapiens (Human)
View this product on CiteAb