Product Citations: 23

Epstein-Barr virus mRNA vaccine synergizes with NK cells to enhance nasopharyngeal carcinoma eradication in humanized mice.

In Molecular Therapy. Oncology on 18 June 2025 by Huang, K., Lin, X. J., et al.

The close association between nasopharyngeal carcinoma (NPC) and Epstein-Barr virus (EBV) infection highlights the potential of therapeutic vaccination against viral antigens as an attractive immunotherapy for treating EBV+ NPC. Maximizing vaccine efficacy often requires selecting optimal T cell epitopes and incorporating co-treatment strategies. Here, we analyzed genomic mutations of 283 cancer-associated EBV strains and predicted epitopes with broad human leukocyte antigen (HLA) coverage from high-frequency nonsynonymous mutations. A polyepitope mRNA vaccine constructed from the predicted epitopes elicited antigen-specific T cell responses but showed suboptimal efficacy in tumor control in a PBMC-humanized mouse EBV+ NPC model. To enhance treatment efficacy, we developed an optimized system for expanding human natural killer (NK) cells with high purity and cytotoxicity as a co-treatment modality. Combined administration of mRNA vaccine and NK cells synergistically improved therapeutic efficacy by durably suppressing or eradicating NPC tumors in humanized mice. The concurrent treatment could improve the infiltration of both human T cells and NK cells into the tumor microenvironment and boost their effector functions. Our study suggests the combined therapeutic vaccination and NK cell therapy as a potential strategy for treating EBV+ NPC.
© 2025 The Author(s).

  • Cancer Research
  • Genetics
  • Immunology and Microbiology

Natural killer (NK) cells are a subset of innate lymphoid cells that are inherently capable of recognizing and killing infected or tumour cells. This has positioned NK cells as a promising live drug for tumour immunotherapy, but limited success suggests incomplete knowledge of their killing mechanism. NK cell-mediated killing involves a complex decision-making process based on integrating activating and inhibitory signals from various ligand-receptor repertoires. However, the relative importance of the different activating ligand-receptor interactions in triggering NK killing remains unclear.
We employed a systematic approach combining clinical, in silico, in vitro, and in vivo data analysis to quantify the impact of various activating ligands. Clinical data analysis was conducted using massive pan-cancer data (n = 10,595), where patients with high NK cell levels were stratified using CIBERSORT. Subsequently, multivariate Cox regression and Kaplan-Meier (KM) survival analysis were performed based on activating ligand expression. To examine the impact of ligand expression on NK killing at the cellular level, we assessed surface expression of five major activating ligands (B7H6, MICA/B, ULBP1, ULBP2/5/6, and ULBP3) of human tumour cell lines of diverse origins (n = 33) via flow cytometry (FACs) and their NK cell-mediated cytotoxicity on by calcein-AM assay using human primary NK cells and NK-92 cell lines. Based on this data, we quantified the contribution of each activating ligand to the NK killing activity using mathematical models and Bayesian statistics. To further validate the results, we performed calcein-AM assays upon ligand knockdown and overexpression, conjugation assays, and co-culture assays in activating ligand-downregulated/overexpressed in liquid tumour (LT) cell lines. Moreover, we established LT-xenograft mouse models to assess the efficacy of NK cell targeting toward tumours with dominant ligands.
Through the clinical analysis, we discovered that among nearly all 18 activating ligands, only patients with LT who were NK cell-rich and specifically had higher B7H6 level exhibited a favorable survival outcome (p = 0.0069). This unexpected dominant role of B7H6 was further confirmed by the analysis of datasets encompassing multiple ligands and a variety of tumours, which showed that B7H6 exhibited the highest contribution to NK killing among five representative ligands. Furthermore, LT cell lines (acute myeloid leukemia (AML), B cell lymphoma, and T-acute lymphocytic leukemia (ALL)) with lowered B7H6 demonstrated decreased susceptibility to NK cell-mediated cytotoxicity compared to those with higher levels. Even within the same cell line, NK cells selectively targeted cells with higher B7H6 levels. Finally, LT-xenograft mouse models (n = 24) confirmed that higher B7H6 results in less tumour burden and longer survival in NK cell-treated LT mice (p = 0.0022).
While NK cells have gained attention for their potent anti-tumour effects without causing graft-versus-host disease (GvHD), thus making them a promising off-the-shelf therapy, our limited understanding of NK killing mechanisms has hindered their clinical application. This study illuminates the crucial role of the activating ligand B7H6 in driving NK cell killing, particularly in the context of LT. Therefore, the expression level of B7H6 could serve as a prognostic marker for patients with LT. Moreover, for the development of NK cell-based immunotherapy, focusing on increasing the level of B7H6 on its cognate receptor, NKp30, could be the most effective strategy.
This work was supported by the National Research Council of Science & Technology (NST) grant (CAP-18-02-KRIBB, GTL24021-000), a National Research Foundation grant (2710012258, 2710004815), and an Institute for Basic Science grant (IBS-R029-C3).
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.

  • Cancer Research

FTO negatively regulates the cytotoxic activity of natural killer cells.

In EMBO Reports on 5 April 2023 by Kim, S. M., Oh, S. C., et al.

N6 -Methyladenosine (m6 A) is the most abundant epitranscriptomic mark and plays a fundamental role in almost every aspect of mRNA metabolism. Although m6 A writers and readers have been widely studied, the roles of m6 A erasers are not well-understood. Here, we investigate the role of FTO, one of the m6 A erasers, in natural killer (NK) cell immunity. We observe that FTO-deficient NK cells are hyperactivated. Fto knockout (Fto-/- ) mouse NK cells prevent melanoma metastasis in vivo, and FTO-deficient human NK cells enhance the antitumor response against leukemia in vitro. We find that FTO negatively regulates IL-2/15-driven JAK/STAT signaling by increasing the mRNA stability of suppressor of cytokine signaling protein (SOCS) family genes. Our results suggest that FTO is an essential modulator of NK cell immunity, providing a new immunotherapeutic strategy for allogeneic NK cell therapies.
© 2023 The Authors.

  • FC/FACS

Various combination treatments have been considered to attain the effective therapy threshold by combining independent antitumor mechanisms against the heterogeneous characteristics of tumor cells in malignant brain tumors. In this study, the natural killer (NK) cells associated with bevacizumab (Bev) plus irinotecan (Iri) against glioblastoma multiforme (GBM) were investigated. For the experimental design, NK cells were expanded and activated by K562 cells expressing the OX40 ligand and membrane-bound IL-18 and IL-21. The effects of Bev and Iri on the proliferation and NK ligand expression of GBM cells were evaluated through MTT assay and flow cytometry. The cytotoxic effects of NK cells against Bev plus Iri-treated GBM cells were also predicted via the LDH assay in vitro. The therapeutic effect of different injected NK cell routes and numbers combined with the different doses of Bev and Iri was confirmed according to tumor size and survival in the subcutaneous (s.c) and intracranial (i.c) U87 xenograft NOD/SCID IL-12Rγnull mouse model. The presence of injected-NK cells in tumors was detected using flow cytometry and immunohistochemistry ex vivo. As a result, Iri was found to affect the proliferation and NK ligand expression of GBM cells, while Bev did not cause differences in these cellular processes. However, the administration of Bev modulated Iri efficacy in the i.c U87 mouse model. NK cells significantly enhanced the cytotoxic effects against Bev plus Iri-treated GBM cells in vitro. Although the intravenous (IV) injection of NK cells in combination with Bev plus Iri significantly reduced the tumor volume in the s.c U87 mouse model, only the direct intratumorally (IT) injection of NK cells in combination with Bev plus Iri elicited delayed tumor growth in the i.c U87 mouse model. Tumor-infiltrating NK cells were detected after IV injection of NK cells in both s.c and i.c U87 mouse models. In conclusion, the potential therapeutic effect of NK cells combined with Bev plus Iri against GBM cells was limited in this study. Accordingly, further research is required to improve the accessibility and strength of NK cell function in this combination treatment.
Copyright © 2023 Tran, Kim, Duong, Thangaraj, Chu, Jung, Kim, Moon, Kim, Lee, Lee, Yun, Lee, Lee, Lee and Jung.

  • Immunology and Microbiology

miR-221-5p and miR-186-5p Are the Critical Bladder Cancer Derived Exosomal miRNAs in Natural Killer Cell Dysfunction.

In International Journal of Molecular Sciences on 2 December 2022 by Huyan, T., Gao, L., et al.

Bladder cancer (BC) is the tenth most commonly diagnosed cancer worldwide, and its carcinogenesis mechanism has not been fully elucidated. BC is able to induce natural killer (NK) cell dysfunction and escape immune surveillance. The present study found that exosomes derived from the urinary bladder cancer cell line (T24 cell) contribute in generating NK cell dysfunction by impairing viability, and inhibiting the cytotoxicity of the NK cell on target cells. Meanwhile, T24 cell-derived exosomes inhibited the expression of the important functional receptors NKG2D, NKp30, and CD226 on NK cells as well as the secretion of perforin and granzyme-B. The critical miRNAs with high expression in T24 cell-derived exosomes were identified using high-throughput sequencing. Furthermore, following dual-luciferase reporter assay and transfection experiments, miR-221-5p and miR-186-5p were confirmed as interfering with the stability of the mRNAs of DAP10, CD96, and the perforin gene in NK cells and may be potential targets used in the therapy for BC.

  • Homo sapiens (Human)
  • Cancer Research
  • Genetics
View this product on CiteAb