Product Citations: 5

PDGFA-associated protein 1 protects mature B lymphocytes from stress-induced cell death and promotes antibody gene diversification.

In The Journal of Experimental Medicine on 5 October 2020 by Delgado-Benito, V., Berruezo-Llacuna, M., et al.

The establishment of protective humoral immunity is dependent on the ability of mature B cells to undergo antibody gene diversification while adjusting to the physiological stressors induced by activation with the antigen. Mature B cells diversify their antibody genes by class switch recombination (CSR) and somatic hypermutation (SHM), which are both dependent on efficient induction of activation-induced cytidine deaminase (AID). Here, we identified PDGFA-associated protein 1 (Pdap1) as an essential regulator of cellular homeostasis in mature B cells. Pdap1 deficiency leads to sustained expression of the integrated stress response (ISR) effector activating transcription factor 4 (Atf4) and induction of the ISR transcriptional program, increased cell death, and defective AID expression. As a consequence, loss of Pdap1 reduces germinal center B cell formation and impairs CSR and SHM. Thus, Pdap1 protects mature B cells against chronic ISR activation and ensures efficient antibody diversification by promoting their survival and optimal function.
© 2020 Delgado-Benito et al.

  • Mus musculus (House mouse)

Pdap1 protects mature B lymphocytes from stress-induced cell death and promotes antibody gene diversification

Preprint on BioRxiv : the Preprint Server for Biology on 31 January 2020 by Delgado-Benito, V., Berruezo-Llacuna, M., et al.

The establishment of protective humoral immunity is dependent on the ability of mature B cells to undergo antibody gene diversification while adjusting to the physiological stressors induced by activation with the antigen. Mature B cells diversify their antibody genes by class switch recombination (CSR) and somatic hypermutation (SHM), which are both dependent on efficient induction of activation-induced cytidine deaminase (AID). Here, we identified PDGFA-associated protein 1 (Pdap1) as an essential regulator of cellular homeostasis in mature B cells. Pdap1 deficiency leads to sustained expression of the integrated stress response (ISR) effector activating transcription factor 4 (Atf4) and induction of the ISR transcriptional program, increased cell death, and defective AID expression. As a consequence, loss of Pdap1 reduces germinal center B cell formation and impairs CSR and SHM. Thus, Pdap1 protects mature B cells against chronic ISR activation and ensures efficient antibody diversification by promoting their survival and optimal function.

The design and characterization of receptor-selective APRIL variants.

In The Journal of Biological Chemistry on 26 October 2012 by Kimberley, F. C., van der Sloot, A. M., et al.

A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.

  • Biochemistry and Molecular biology

Virally-induced upregulation of heparan sulfate on B cells via the action of type I IFN.

In The Journal of Immunology on 1 December 2011 by Jarousse, N., Trujillo, D. L., et al.

Cell surface heparan sulfate (HS) is an important coreceptor for many cytokines, chemokines, and growth factors. In this study, we report that splenic murine B cells express very little HS and that upon infection with either gammaherpesvirus (murine gammaherpesvirus 68) or betaherpesvirus (murine cytomegalovirus), HS is rapidly upregulated at the surface of B cells. HS upregulation was not observed in mice deficient for the type I IFN (IFN-I) receptor. Additionally, treatment of wild-type mice with the IFN-I inducer polyinosine polycytidylic acid triggered HS expression at the B cell surface. Similarly, incubation of purified splenic B cells with IFN-I, TLR ligands, or BCR stimulators ex vivo resulted in a drastic increase in HS surface expression. We found that IFN-I induced an increase in the surface expression of HS-modified syndecan 4 as well as that of an unidentified heparan sulfate proteoglycan. Finally, IFN-I treatment increased B cell responsiveness to APRIL, a cytokine involved in B cell survival and T cell-independent B cell responses. Enzymatic removal of HS from IFN-I-treated B cells inhibited APRIL. Altogether, our results indicate that upon herpesvirus infection in mice, HS is rapidly upregulated at the surface of B cells due to the action of IFN-I, potentially increasing B cell responsiveness to cytokines. Induction of HS expression at the B cell surface by stimulators of the innate immune response likely plays a key role in the development of a robust immune response.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

TNF superfamily member 13, APRIL, inhibits allergic lung inflammation.

In European Journal of Immunology on 1 January 2011 by Xiao, Y., Motomura, S., et al.

The T-cell functions of a proliferation-inducing ligand (APRIL, also known as TNFSF13) remain largely undefined. We previously showed that APRIL suppressed Th2 cytokine production in cultured CD4(+) T cells and Th2 antibody responses. Here we show that APRIL suppresses allergic lung inflammation, which is associated with diminished expression of the transcription factor c-maf. Mice deficient in the April gene (April(-/-) mice) had significantly aggravated lung inflammation compared with WT mice in the ovalbumin-induced allergic lung inflammation model. Likewise, blockade of APRIL in WT mice by the APRIL-receptor fusion protein, transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI)-Ig, enhanced lung inflammation. Transfer of APRIL-sufficient, ovalbumin-specific, TCR-transgenic CD4(+) T (OT-II) cells to April(-/-) mice restored the suppressive effect of APRIL on lung inflammation. Mechanistically, the expression of the Th2 cytokine transcription factor c-maf, but not GATA-3, was markedly enhanced in April(-/-) CD4(+) T cells at the RNA and protein level and under non-polarizing (Th neutral, ThN) and Th2-polarizing conditions. Since c-maf transactivates the IL-4 gene, the increased c-maf expression in April(-/-) mice readily explains increased Th2 cytokine production. Independent of its effect on IL-4, APRIL suppressed IL-13 expression. APRIL thus may regulate lung inflammation in a dual way, by acting on c-maf expression and by directly controlling IL-13 production.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • Immunology and Microbiology
View this product on CiteAb