Product Citations: 53

Syndecans and glycosaminoglycans influence B-cell development and activation.

In EMBO Reports on 1 May 2025 by McKenzie, C. I., Dvorscek, A. R., et al.

Syndecans (SDCs) are glycosaminoglycan-containing cell surface proteins with diverse functions in the immune system with SDC1 (CD138) and SDC4 expressed in B-lineage cells. Here, we show that stem cells lacking either molecule generate fewer B-cell progenitors but give rise to mature B cells in vivo. Deletion of the plasma cell "marker" CD138 has no effect on homeostatic or antigen-induced plasma cell formation. Naive B cells express high SDC4 and encounter with cognate antigen results in transient CD138 upregulation and SDC4 loss, both further modulated by IL-4, IL-21, and CD40 ligation. SDC4 is downregulated on germinal center B cells and absent on most memory B cells. Glycosaminoglycans such as those attached to SDCs, and heparin, a commonly used therapeutic, regulate survival and activation of naive B cells by limiting responsiveness to cognate antigen. Conversely, ablation of SDC4 results in increased baseline and antigen-induced B-cell activation. Collectively, our data reveal B-cell activation- and subset-dependent SDC expression and show that SDC4 and GAGs can limit antigen-induced activation to promote B-cell survival and expansion.
© 2025. The Author(s).

  • Immunology and Microbiology

eIF3a is a N 6-methyladenosine (m6A) reader that regulates mRNA translation by recognizing m6A modifications of these mRNAs. It has been suggested that eIF3a may play an important role in regulating translation initiation via m6A during infection when canonical cap-dependent initiation is inhibited. However, the death of animal model studies impedes our understanding of the functional significance of eIF3a in immunity and regulation in vivo. In this study, we investigated the in vivo function of eIF3a using eIF3a knockout and knockdown mouse models and found that eIF3a deficiency resulted in splenic tissue structural disruption and multi-organ damage, which contributed to severe sepsis induced by Lipopolysaccharide (LPS). Ectopic eIF3a overexpression in the eIF3a knockdown mice rescued mice from LPS-induced severe sepsis. We further showed that eIF3a maintains a functional and healthy immune system by regulating B cell function and quantity through m6A modification of mRNAs. These findings unveil a novel mechanism underlying sepsis, implicating the pivotal role of B cells in this complex disease process regulated by eIF3a. Furthermore, eIF3a may be used to develop a potential strategy for treating sepsis.
© 2025 The Authors.

  • Immunology and Microbiology

MRL/lpr mice develop systemic lupus erythematosus-like autoimmunity due to defective FAS-mediated apoptosis. We generated Fas lpr mice deficient in EAF2, a transcription elongation-associated factor known to promote apoptosis in germinal center (GC) B cells and crucial for preventing autoimmunity. Contrary to expectations, EAF2 deficiency significantly reduced lymphadenopathy and splenomegaly, extended lifespan, and alleviated nephritis by decreasing renal immune complex deposition. Additionally, EAF2 deficiency markedly reduced accumulation of activated B cells, GC B cells, plasma cells, and the abnormal B220+CD3+ T cells in Fas lpr mice. Further analysis revealed that Eaf2 -/- Fas lpr B cells showed hyperactivation upon various stimulations, followed by increased death. RNA sequencing of the B220+CD3+ cells revealed a downregulation in survival-promoting genes such as Bcl-2 and Akt and an upregulation of proapoptotic genes. We conclude that the combined deficiency in FAS- and EAF2-mediated apoptotic pathways leads to B cell hyperactivation and subsequent death, thereby ameliorating systemic autoimmunity in this model.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

In B lymphocytes, class switch recombination (CSR) is an essential process that adapts immunoglobulin (Ig) subtypes to antigen response. Taking place within the Ig heavy chain (IgH) locus, CSR needs controlled transcription of targeted regions governed by the IgH 3' regulatory region (3'RR). This super-enhancer is composed of four core enhancers surrounded by inverted repeated sequences, forming a quasi-palindrome. In addition to transcription, nuclear organization appears to be an important level in CSR regulation. While it is now established that chromatin loop extrusion takes place within IgH locus to facilitate CSR by bringing the donor and acceptor switch regions closer together, the underlying mechanism that triggers CSR loop formation remains partially understood. Here, by combining DNA 3D fluorescence in situhybridization with various high-throughput approaches, we deciphered critical functions for the 3'RR core enhancer element in nuclear addressing, accessibility and chromatin looping of the IgH locus. We conclude that the 3'RR core enhancers are necessary and sufficient to pre-organize the position and conformation of IgH loci in resting B-cell nuclei to enable the deletional recombination events required for productive successful CSR in activated B-cell nuclei.
© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.

  • Biochemistry and Molecular biology

Tumor cell-originated events prevent efficient antitumor immune response and limit the application of anti-PD1 checkpoint immunotherapy. We show that syndecan-1 (SDC1) has a critical role in the regulation of T cell-mediated control of tumor growth. SDC1 inhibition increases the permeation of CD8+ T cells into tumors and triggers CD8+ T cell-mediated control of tumor growth, accompanied by increased proportions of progenitor-exhausted and effector-like CD8+ T cells. SDC1 deficiency alters multiple signaling events in tumor cells, including enhanced IFN-γ-STAT1 signaling, and augments antigen presentation and sensitivity to T cell-mediated cytotoxicity. Combinatory inhibition of SDC1 markedly potentiates the therapeutic effects of anti-PD1 in inhibiting tumor growth. Consistently, the findings are supported by the data from human tumors showing that SDC1 expression negatively correlates with T cell presence in tumor tissues and the response to immune checkpoint blockade therapy. Our findings suggest that SDC1 inhibits antitumor immunity, and that targeting SDC1 may promote anti-PD1 response for cancer treatment.

  • Immunology and Microbiology
View this product on CiteAb