Product Citations: 5

Anthracyclines are widely used in the treatment of many solid cancers, but their efficacy is limited by cardiotoxicity. As the number of pediatric cancer survivors continues to rise, there has been a concomitant increase in people living with anthracycline-induced cardiotoxicity. Accordingly, there is an ongoing need for new models to better understand the pathophysiological mechanisms of anthracycline-induced cardiac damage. Here we generated induced pluripotent stem cells (iPSCs) from two pediatric oncology patients with acute cardiotoxicity induced by anthracyclines and differentiated them to ventricular cardiomyocytes (hiPSC-CMs). Comparative analysis of these cells (CTX hiPSC-CMs) and control hiPSC-CMs revealed that the former were significantly more sensitive to cell injury and death from the anthracycline doxorubicin (DOX), as measured by viability analysis, cleaved caspase 3 expression, oxidative stress, genomic and mitochondrial damage and sarcomeric disorganization. The expression of several mRNAs involved in structural integrity and inflammatory response were also differentially affected by DOX. Functionally, optical mapping analysis revealed higher arrythmia complexity after DOX treatment in CTX iPSC-CMs. Finally, using a panel of previously identified microRNAs associated with cardioprotection, we identified lower levels of miR-22-3p, miR-30b-5p, miR-90b-3p and miR-4732-3p in CTX iPSC-CMs under basal conditions. Our study provides valuable phenotype information for cellular models of cardiotoxicity and highlights the significance of using patient-derived cardiomyocytes for studying the associated pathogenic mechanisms.

  • FC/FACS
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

The non-pathogenic TH17 subset of helper T cells clears fungal infections, whereas pathogenic TH17 cells cause inflammation and tissue damage; however, the mechanisms controlling these distinct responses remain unclear. Here we found that fungi sensing by the C-type lectin dectin-1 in human dendritic cells (DCs) directed the polarization of non-pathogenic TH17 cells. Dectin-1 signaling triggered transient and intermediate expression of interferon (IFN)-β in DCs, which was mediated by the opposed activities of transcription factors IRF1 and IRF5. IFN-β-induced signaling led to integrin αvβ8 expression directly and to the release of the active form of the cytokine transforming growth factor (TGF)-β indirectly. Uncontrolled IFN-β responses as a result of IRF1 deficiency induced high expression of the IFN-stimulated gene BST2 in DCs and restrained TGF-β activation. Active TGF-β was required for polarization of non-pathogenic TH17 cells, whereas pathogenic TH17 cells developed in the absence of active TGF-β. Thus, dectin-1-mediated modulation of type I IFN responses allowed TGF-β activation and non-pathogenic TH17 cell development during fungal infections in humans.
© 2022. The Author(s).

  • Immunology and Microbiology

Flow cytometry is a powerful method, widely used to identify cell types present in tissues, to describe their phenotypes, and to purify cells for functional analyses. As a single cell technique, flow cytometry relies on identifying and excluding cell doublets and aggregates present in samples in the initial gating steps. This identification is based on detection of events generating electrical pulses falling outside of linear variations of pulse height, width, and area in a singlet population with increasing cell sizes. In heterogeneous cell mixtures, however, with cell types varying extensively in size and granularity, exclusion of doublets has the risk of removing single cells that co-localize with doublets of another cell type. This is particularly the case when doublets of a smaller cell type overlap with large cells of a distinct, larger cell type. Here, we describe a gating method to reduce this risk. In this protocol, initial gating steps aim to segregate cells according to physical characteristics (such as size and granularity) and gene expression properties in order to obtain more homogeneous cell clusters. Doublet exclusion is then performed separately in each cluster, minimizing the risk of confusion between single cells and doublets. To illustrate this protocol, human blood monocytes are separated and analyzed. By implementing this protocol, we were able to reveal the existence of a population of large monocytes previously unrecognized using conventional gating strategies. In subsequent functional assays, we have shown that this novel population exhibits unique inflammatory responses, highlighting the need and pertinence of this approach to identify and characterize infrequent-yet functionally relevant-cell populations present in complex cell mixtures. © 2021 Wiley Periodicals LLC. Basic Protocol: Distinguishing single cells from doublets in heterogeneous cell mixtures by flow cytometry.
© 2021 Wiley Periodicals LLC.

  • Homo sapiens (Human)

Anthracycline-induced cardiotoxicity (ACT) is a key limiting factor in setting optimal chemotherapy regimes, with almost half of patients expected to develop congestive heart failure given high doses. However, the genetic basis of sensitivity to anthracyclines remains unclear. We created a panel of iPSC-derived cardiomyocytes from 45 individuals and performed RNA-seq after 24 hr exposure to varying doxorubicin dosages. The transcriptomic response is substantial: the majority of genes are differentially expressed and over 6000 genes show evidence of differential splicing, the later driven by reduced splicing fidelity in the presence of doxorubicin. We show that inter-individual variation in transcriptional response is predictive of in vitro cell damage, which in turn is associated with in vivo ACT risk. We detect 447 response-expression quantitative trait loci (QTLs) and 42 response-splicing QTLs, which are enriched in lower ACT GWAS [Formula: see text]-values, supporting the in vivo relevance of our map of genetic regulation of cellular response to anthracyclines.
© 2018, Knowles et al.

  • FC/FACS
  • Mus musculus (House mouse)
  • Genetics

Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration.

In Nature Genetics on 1 September 2017 by Patterson, M., Barske, L., et al.

Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.

  • FC/FACS
  • Cardiovascular biology
  • Genetics
  • Immunology and Microbiology
View this product on CiteAb