Product Citations: 41

Novel cellular therapies may enable HIV control or cure. HIV-specific T cells targeting conserved immunogenic protein regions of HIV Gag/Pol and the entirety of HIV Nef, termed HST-NEETs, eliminate HIV infected cells in vitro. Here we enroll seven participants in an open-label, single-arm phase 1 study (NCT03485963) to evaluate the safety (primary endpoint) of two autologous administrations of HST-NEET products without prescribed lymphodepletion. Adults with well-controlled HIV on anti-retroviral therapy are eligible. Six participants completed safety monitoring. No serious product-related toxicities are observed. Secondary endpoints are to assess expansion and persistence of HIV-reactive T cell clones, and changes to the HIV reservoir for each infused participant. HIV-specific T cell and HIV anti-Env antibody responses increase in two participants after infusion two. A trend towards decreasing levels of intact proviruses is observed in 2 participants. Three participants show persistence of HIV-reactive, product-associated T cell clones for ≥40 weeks post infusions. HST-NEETs infusions are well-tolerated. Future trials are needed to evaluate the efficacy of HST-NEETs in this population.
© 2025. The Author(s).

  • Immunology and Microbiology

CD8+ lymphocytes do not impact SIV reservoir establishment under ART.

In Nature Microbiology on 1 February 2023 by Statzu, M., Jin, W., et al.

Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8+ T cells are important during the initial control of viral replication. Here we examined the effect of CD8+ T cells on formation of the latent reservoir in simian immunodeficiency virus (SIV)-infected macaques by performing experimental CD8+ depletion either before infection or before early (that is, day 14 post-infection) ART initiation. We found that CD8+ depletion resulted in slower decline of viremia, indicating that CD8+ lymphocytes reduce the average lifespan of productively infected cells during acute infection and early ART, presumably through SIV-specific cytotoxic T lymphocyte (CTL) activity. However, CD8+ depletion did not change the frequency of infected CD4+ T cells in the blood or lymph node as measured by the total cell-associated viral DNA or intact provirus DNA assay. In addition, the size of the persistent reservoir remained the same when measuring the kinetics of virus rebound after ART interruption. These data indicate that during early SIV infection, the viral reservoir that persists under ART is established largely independent of CTL control.
© 2023. The Author(s).

  • FC/FACS
  • Macaca mulatta (Rhesus Monkey)
  • Immunology and Microbiology

Distinct Cellular Immune Responses to SARS-CoV-2 in Pregnant Women.

In The Journal of Immunology on 15 April 2022 by Gomez-Lopez, N., Romero, R., et al.

Pregnant women are at increased risk of adverse outcomes, including preeclampsia and preterm birth, that may result from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Pregnancy imprints specific maternal immune responses that can modulate host susceptibility to microbial infection; therefore, recent studies have focused on the humoral response against SARS-CoV-2 in pregnant women. However, the pregnancy-specific cellular immune responses triggered by SARS-CoV-2 infection are poorly understood. In this study, we undertook an extensive in vitro investigation to determine the cellular immune responses to SARS-CoV-2 particles and proteins/peptides in pregnant women. First, we show that SARS-CoV-2 particles do not alter the pregnancy-specific oxidative burst of neutrophils and monocytes. Yet, SARS-CoV-2 particles/proteins shift monocyte activation from the classical to intermediate states in pregnant, but not in nonpregnant, women. Furthermore, SARS-CoV-2 proteins, but not particles or peptide pools, mildly enhance T cell activation during pregnancy. As expected, B cell phenotypes are heavily modulated by SARS-CoV-2 particles in all women; yet, pregnancy itself further modified such responses in these adaptive immune cells. Lastly, we report that pregnancy itself governs cytokine responses in the maternal circulation, of which IFN-β and IL-8 were diminished upon SARS-CoV-2 challenge. Collectively, these findings highlight the differential in vitro responses to SARS-CoV-2 in pregnant and nonpregnant women and shed light on the immune mechanisms implicated in coronavirus disease 2019 during pregnancy.
Copyright © 2022 by The American Association of Immunologists, Inc.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19
  • Endocrinology and Physiology
  • Immunology and Microbiology

Cellular heterogeneity of circulating CD4+CD8+ double-positive T cells characterized by single-cell RNA sequencing.

In Scientific Reports on 8 December 2021 by Choi, S. M., Park, H. J., et al.

Circulating CD4+CD8+ double-positive (DP) T cells are associated with a variety of disease states. However, unlike conventional T cells, the composition of this population is poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to analyze the composition and characteristics of the DP T cell population circulating in the peripheral blood of cynomolgus monkeys. We found that circulating DP T cells not only contain a large number of naïve cells, but also comprise a heterogeneous population (CD4 CTL-, Eomes+ Tr1-, Th2-, Th17-, Tfh-, Treg-, CD8 CTL-, and innate-like cells) with multiple potential functions. Flow cytometry analysis revealed that a substantial number of the naïve DP T cells expressed CD8αβ, as well as CD8αα, along with high expression of CD31. Moreover, the CD4hiCD8lo and CD4hiCD8hi populations, which express high levels of the CD4 coreceptor, comprised subsets characterized by helper and regulatory functions, some of which also exhibited cytotoxic functions. By contrast, the CD4loCD8hi population with high CD8 coreceptor expression comprised a subset characterized by CD8 CTL- and innate-like properties. Taken together, the data show that scRNA-seq analysis identified a more diverse subset of the circulating DP cells than is currently known, despite this population being very small.
© 2021. The Author(s).

  • Genetics
  • Immunology and Microbiology

Cytomegalovirus mediates expansion of IL-15-responsive innate-memory cells with SIV killing function.

In The Journal of Clinical Investigation on 2 August 2021 by Méndez-Lagares, G., Chin, N., et al.

Interindividual immune variability is driven predominantly by environmental factors, including exposure to chronic infectious agents such as cytomegalovirus (CMV). We investigated the effects of rhesus CMV (RhCMV) on composition and function of the immune system in young macaques. Within months of infection, RhCMV was associated with impressive changes in antigen presenting cells, T cells, and NK cells-and marked expansion of innate-memory CD8+ T cells. These cells express high levels of NKG2A/C and the IL-2 and IL-15 receptor beta chain, CD122. IL-15 was sufficient to drive differentiation of the cells in vitro and in vivo. Expanded NKG2A/C+CD122+CD8+ T cells in RhCMV-infected macaques, but not their NKG2-negative counterparts, were endowed with cytotoxicity against class I-deficient K562 targets and prompt IFN-γ production in response to stimulation with IL-12 and IL-18. Because RhCMV clone 68-1 forms the viral backbone of RhCMV-vectored SIV vaccines, we also investigated immune changes following administration of RhCMV 68-1-vectored SIV vaccines. These vaccines led to impressive expansion of NKG2A/C+CD8+ T cells with capacity to inhibit SIV replication ex vivo. Thus, CMV infection and CMV-vectored vaccination drive expansion of functional innate-like CD8 cells via host IL-15 production, suggesting that innate-memory expansion could be achieved by other vaccine platforms expressing IL-15.

  • Immunology and Microbiology
View this product on CiteAb