Product Citations: 3

Platelet Immunophenotyping by High-Dimensional Mass Cytometry.

In Current Protocols on 1 May 2021 by Spurgeon, B. E. J., Michelson, A. D., et al.

Platelets are small blood cells that contribute to hemostasis, immunity, and inflammation. Characterization of platelet surface markers allows for differentiation of activated platelets from resting platelets, diagnosis of platelet disorders, and investigation of platelet biology and pathology. In this article, we describe the use of mass cytometry or "CyTOF" (mass spectroscopy detection of metal-tagged antibodies on individual cells) to measure a large number of markers on each platelet and to identify platelet subsets based on the shared expression of multiple markers. This powerful new approach provides a vastly more detailed picture of platelet immunophenotypes than conventional flow cytometry and enables investigation of the roles of platelet subsets in health and disease. © 2021 Wiley Periodicals LLC. Basic Protocol: Platelet immunophenotyping by high-dimensional mass cytometry Support Protocol: Data preprocessing.
© 2021 Wiley Periodicals LLC.

Mass cytometry (MC) uses mass spectrometry to simultaneously detect multiple metal-conjugated antibodies on single cells, thereby enabling the detailed study of cellular function. Here, for the first time, we applied MC to the analysis of platelets. We developed a panel of 14 platelet-specific metal-tagged antibodies (targeting cluster of differentiation [CD] 9, CD29, CD31, CD36, CD41, CD42a, CD42b, CD61, CD62P, CD63, CD107a, CD154, glycoprotein [GP] VI and activated integrin αIIbβ3) and compared this panel with two fluorescence flow cytometry (FFC) panels (CD41, CD42b, and CD61; or CD42b, CD62P, and activated integrin αIIbβ3) in the evaluation of activation-dependent changes in glycoprotein expression on healthy subject and Glanzmann thrombasthenia (GT) platelets. High-dimensional analysis of surface markers detected by MC identified previously unappreciated subpopulations of platelets in healthy donors. As expected, MC and FFC revealed that GT platelets had significantly reduced CD41, CD61, and activated integrin αIIbβ3 surface expression. MC also revealed that surface expression of CD9, CD42a and CD63 were elevated, CD31, CD154 and GPVI were reduced and CD29, CD36, CD42b, CD62P and CD107a were similar on GT platelets compared to healthy donor platelets. In summary, MC revealed distinct platelet subtypes in healthy subjects and novel alterations in surface glycoproteins on GT platelets.

Targeted repair of heart injury by stem cells fused with platelet nanovesicles.

In Nature Biomedical Engineering on 5 June 2018 by Tang, J., Su, T., et al.

Stem cell transplantation, as used clinically, suffers from low retention and engraftment of the transplanted cells. Inspired by the ability of platelets to recruit stem cells to sites of injury on blood vessels, we hypothesized that platelets might enhance the vascular delivery of cardiac stem cells (CSCs) to sites of myocardial infarction injury. Here, we show that CSCs with platelet nanovesicles fused onto their surface membranes express platelet surface markers that are associated with platelet adhesion to injury sites. We also find that the modified CSCs selectively bind collagen-coated surfaces and endothelium-denuded rat aortas, and that in rat and porcine models of acute myocardial infarction the modified CSCs increase retention in the heart and reduce infarct size. Platelet-nanovesicle-fused CSCs thus possess the natural targeting and repairing ability of their parental cell types. This stem cell manipulation approach is fast, straightforward and safe, does not require genetic alteration of the cells, and should be generalizable to multiple cell types.

  • Cardiovascular biology
  • Stem Cells and Developmental Biology
View this product on CiteAb