Product Citations: 10

Eosinophils protect against pulmonary hypertension through 14-HDHA and 17-HDHA.

In The European Respiratory Journal on 1 March 2023 by Shu, T., Zhang, J., et al.

Pulmonary hypertension (PH) is a life-threatening disease featuring pulmonary vessel remodelling and perivascular inflammation. The effect, if any, of eosinophils (EOS) on the development of PH remains unclear.
EOS infiltration and chemotaxis were investigated in peripheral blood and lung tissues from pulmonary arterial hypertension (PAH) patients without allergic history and from sugen/hypoxia-induced PH mice. The role of EOS deficiency in PH development was investigated using GATA1-deletion (ΔdblGATA) mice and anti-interleukin 5 antibody-treated mice and rats. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was conducted to identify the critical oxylipin molecule(s) produced by EOS. Culture supernatants and lysates of EOS were collected to explore the mechanisms in co-culture cell experiments.
There was a lower percentage of EOS in peripheral blood but higher infiltration in lung tissues from PAH patients and PH mice. PAH/PH lungs showed increased EOS-related chemokine expression, mainly C-C motif chemokine ligand 11 derived from adventitial fibroblasts. EOS deficiency aggravated PH in rodents, accompanied by increased neutrophil and monocyte/macrophage infiltration. EOS highly expressed arachidonate 15-lipoxygenase (ALOX15). 14-hydroxy docosahexaenoic acid (14-HDHA) and 17-HDHA were critical downstream oxylipins produced by EOS, which showed anti-inflammatory effects on recruitment of neutrophils and monocytes/macrophages through N-formyl peptide receptor 2. They also repressed pulmonary artery smooth muscle cell (PASMC) proliferation by activating peroxisome proliferator-activated receptor γ and blunting Stat3 phosphorylation.
In PH development without external stimuli, peripheral blood exhibits a low EOS level. EOS play a protective role by suppressing perivascular inflammation and maintaining PASMC homeostasis via 14/17-HDHA.
Copyright ©The authors 2023.

  • Cardiovascular biology

Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease.

In American Journal of Respiratory and Critical Care Medicine on 15 September 2021 by Lu, Z., Van Eeckhoutte, H. P., et al.

Rationale: Necroptosis, mediated by RIPK3 (receptor-interacting protein kinase 3) and MLKL (mixed lineage kinase domain-like), is a form of regulated necrosis that can drive tissue inflammation and destruction; however, its contribution to chronic obstructive pulmonary disease (COPD) pathogenesis is poorly understood. Objectives: To determine the role of necroptosis in COPD. Methods: Total and active (phosphorylated) RIPK3 and MLKL were measured in the lung tissue of patients with COPD and control subjects without COPD. Necroptosis-related mRNA and proteins as well as cell death were examined in lungs and pulmonary macrophages of mice with cigarette smoke (CS)-induced experimental COPD. The responses of Ripk3-/- and Mlkl-/- mice to acute and chronic CS exposure were compared with those of wild-type mice. The combined inhibition of apoptosis (with the pan-caspase inhibitor quinoline-Val-Asp-difluorophenoxymethylketone [qVD-OPh]) and necroptosis (with deletion of Mlkl in mice) was assessed. Measurements and Main Results: The total MLKL protein in the epithelium and macrophages and the pRIPK3 and pMLKL in lung tissue were increased in patients with severe COPD compared with never-smokers or smoker control subjects without COPD. Necroptosis-related mRNA and protein levels were increased in the lungs and macrophages in CS-exposed mice and experimental COPD. Ripk3 or Mlkl deletion prevented airway inflammation upon acute CS exposure. Ripk3 deficiency reduced airway inflammation and remodeling as well as the development of emphysematous pathology after chronic CS exposure. Mlkl deletion and qVD-OPh treatment reduced chronic CS-induced airway inflammation, but only Mlkl deletion prevented airway remodeling and emphysema. Ripk3 or Mlkl deletion and qVD-OPh treatment reduced CS-induced lung-cell death. Conclusions: Necroptosis is induced by CS exposure and is increased in the lungs of patients with COPD and in experimental COPD. Inhibiting necroptosis attenuates CS-induced airway inflammation, airway remodeling, and emphysema. Targeted inhibition of necroptosis is a potential therapeutic strategy in COPD.

  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Immunology and Microbiology

Molecular Features of Cancers Exhibiting Exceptional Responses to Treatment.

In Cancer Cell on 11 January 2021 by Wheeler, D. A., Takebe, N., et al.

A small fraction of cancer patients with advanced disease survive significantly longer than patients with clinically comparable tumors. Molecular mechanisms for exceptional responses to therapy have been identified by genomic analysis of tumor biopsies from individual patients. Here, we analyzed tumor biopsies from an unbiased cohort of 111 exceptional responder patients using multiple platforms to profile genetic and epigenetic aberrations as well as the tumor microenvironment. Integrative analysis uncovered plausible mechanisms for the therapeutic response in nearly a quarter of the patients. The mechanisms were assigned to four broad categories-DNA damage response, intracellular signaling, immune engagement, and genetic alterations characteristic of favorable prognosis-with many tumors falling into multiple categories. These analyses revealed synthetic lethal relationships that may be exploited therapeutically and rare genetic lesions that favor therapeutic success, while also providing a wealth of testable hypotheses regarding oncogenic mechanisms that may influence the response to cancer therapy.
Published by Elsevier Inc.

  • IHC
  • Cancer Research

Effects of Survival Motor Neuron Protein on Germ Cell Development in Mouse and Human.

In International Journal of Molecular Sciences on 11 January 2021 by Chang, W. F., Peng, M., et al.

Survival motor neuron (SMN) is ubiquitously expressed in many cell types and its encoding gene, survival motor neuron 1 gene (SMN1), is highly conserved in various species. SMN is involved in the assembly of RNA spliceosomes, which are important for pre-mRNA splicing. A severe neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of SMN1 that specifically occurred in humans. We previously reported that SMN plays roles in stem cell biology in addition to its roles in neuron development. In this study, we investigated whether SMN can improve the propagation of spermatogonia stem cells (SSCs) and facilitate the spermatogenesis process. In in vitro culture, SSCs obtained from SMA model mice showed decreased growth rate accompanied by significantly reduced expression of spermatogonia marker promyelocytic leukemia zinc finger (PLZF) compared to those from heterozygous and wild-type littermates; whereas SMN overexpressed SSCs showed enhanced cell proliferation and improved potency. In vivo, the superior ability of homing and complete performance in differentiating progeny was shown in SMN overexpressed SSCs in host seminiferous tubule of transplant experiments compared to control groups. To gain insights into the roles of SMN in clinical infertility, we derived human induced pluripotent stem cells (hiPSCs) from azoospermia patients (AZ-hiPSCs) and from healthy control (ct-hiPSCs). Despite the otherwise comparable levels of hallmark iPCS markers, lower expression level of SMN1 was found in AZ-hiPSCs compared with control hiPSCs during in vitro primordial germ cell like cells (PGCLCs) differentiation. On the other hand, overexpressing hSMN1 in AZ-hiPSCs led to increased level of pluripotent markers such as OCT4 and KLF4 during PGCLC differentiation. Our work reveal novel roles of SMN in mammalian spermatogenesis and suggest new therapeutic targets for azoospermia treatment.

  • IHC
  • Mus musculus (House mouse)
  • Neuroscience

Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance.

In International Journal of Molecular Sciences on 25 January 2020 by Chang, W. F., Xu, J., et al.

The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance.

  • FC/FACS
  • IHC-IF
  • Mus musculus (House mouse)
  • Neuroscience
View this product on CiteAb