Product Citations: 4

Single-cell characterization of neovascularization using hiPSC-derived endothelial cells in a 3D microenvironment

Preprint on BioRxiv : the Preprint Server for Biology on 16 February 2022 by Rosowski, S., Brähler, C., et al.

The formation of vascular structures is fundamental for in vitro tissue engineering. Vascularization can enable the nutrient supply within larger structures and increase transplantation efficiency, which are currently limiting factors in organoid research. We differentiated human induced pluripotent stem cells toward endothelial cells in 3D suspension culture. To investigate in vitro neovascularization and various 3D microenvironmental approaches, we designed a comprehensive single-cell transcriptomic study. Time-resolved single-cell transcriptomics of the endothelial and co-evolving mural cells gave insights into cell type development, stability, and plasticity. Transfer to a 3D hydrogel microenvironment induced neovascularization and facilitated tracing of sprouting, coalescing, and tubulogenic endothelial cells states. During maturation, we monitored two pericyte subtypes evolving of mural cells. Profiling cell-cell interactions between pericytes and endothelial cells confirmed in vivo angiogenic signaling and emphasized new cytokine signals during tubulogenesis. Our data, analyses, and results provide an in vitro roadmap to guide vascularization in future tissue engineering.

  • Homo sapiens (Human)

Cancer stem cells (CSCs) have been reported in a variety of cancers. SRY-box 2 (SOX2) is a member of the SOX family of transcription factors and has been shown to play a critical role in maintaining the functions of CSCs and promoting tumor initiation. However, the underlying mechanisms for the transcriptional regulation of the SOX2 gene in CSCs are unclear. In this study, using in silico and experimental approaches, we identified transcriptional repressor GATA binding 1 (TRPS1), an atypical GATA-type transcription factor, as a critical transcriptional regulator that represses SOX2 expression and thereby suppresses cancer stemness and tumorigenesis. Mechanistically, TRPS1 repressed SOX2 expression by directly targeting the consensus GATA-binding element in the SOX2 promoter as elucidated by ChIP and luciferase reporter assays. Of note, in vitro mammosphere formation assays in culture and in vivo xenograft tumor initiation experiments in mouse models revealed that TRPS1-mediated repression of SOX2 expression suppresses CSC functions and tumor initiation. Taken together, our study provides detailed mechanistic insights into CSC functions and tumor initiation by the TRPS1-SOX2 axis.
© 2018 Gong et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cancer Research
  • Stem Cells and Developmental Biology

Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control.

In JCI Insight on 7 December 2017 by Mah, A. Y., Rashidi, A., et al.

NK cell activation has been shown to be metabolically regulated in vitro; however, the role of metabolism during in vivo NK cell responses to infection is unknown. We examined the role of glycolysis in NK cell function during murine cytomegalovirus (MCMV) infection and the ability of IL-15 to prime NK cells during CMV infection. The glucose metabolism inhibitor 2-deoxy-ᴅ-glucose (2DG) impaired both mouse and human NK cell cytotoxicity following priming in vitro. Similarly, MCMV-infected mice treated with 2DG had impaired clearance of NK-specific targets in vivo, which was associated with higher viral burden and susceptibility to infection on the C57BL/6 background. IL-15 priming is known to alter NK cell metabolism and metabolic requirements for activation. Treatment with the IL-15 superagonist ALT-803 rescued mice from otherwise lethal infection in an NK-dependent manner. Consistent with this, treatment of a patient with ALT-803 for recurrent CMV reactivation after hematopoietic cell transplant was associated with clearance of viremia. These studies demonstrate that NK cell-mediated control of viral infection requires glucose metabolism and that IL-15 treatment in vivo can reduce this requirement and may be effective as an antiviral therapy.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs.
The findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS). Isolated ECFCs displayed a higher proliferative ability in PL supplemented medium than cells in FBS medium during 30 days expansion. The cells at 18 cumulative population doubling levels (CPDL) retained their proliferative capacity, showed higher sprouting ability in fibrin matrices upon stimulation with FGF-2 and VEGF-A than the cells at 6 CPDL, and displayed low β-galactosidase activity. The increased sprouting of PB-ECFCs at 18 CPDL was accompanied by an intrinsic activation of the uPA/uPAR fibrinolytic system. Induced deficiency of uPA (urokinase-type plasminogen activator) or uPAR (uPA receptor) by siRNA technology completely abolished the angiogenic ability of PB-ECFCs in fibrin matrices. During the serial expansion, the gene induction of the markers associated with inflammatory activation such as VCAM-1 and ICAM-1 did not occur or only to limited extent. While further propagation up to 31 CPDL proceeded at a comparable rate, a marked upregulation of inflammatory markers occurred in all donors accompanied by a further increase of uPA/uPAR gene induction. The observed induction of inflammatory genes at later stages of long-term propagation of PB-ECFCs underpins the necessity to determine the right time-point for harvesting of sufficient number of cells with preserved therapeutical potential.
The presented isolation method and subsequent cell expansion in platelet lysate supplemented culture medium permits suitable large-scale propagation of PB-ECFC. For optimal use of PB-ECFCs in clinical settings, our data suggest that 15-20 CPDL is the most adequate maturation stage.

  • FC/FACS
  • Cardiovascular biology
View this product on CiteAb