Product Citations: 7

Interleukin-2 (IL-2) expands the depleted T regulatory (Treg) cell population, and it has emerged as a potential therapy in systemic lupus erythematosus (SLE). However, IL-2 administration may involve the risk of expanding unwanted pro-inflammatory cells. We herein studied the effects of IL-2 on pro-inflammatory cytokine production by CD4+ and CD8+ T cells in parallel with Treg development following CD3/CD28 co-stimulation. While Treg cells are depleted in SLE patients, their CD4+ T cells were poised to receive and activate IL-2 signaling as evidenced by upregulation of CD25 and enhanced IL-2-incued STAT5 phosphorylation during Treg differentiation. In patients with SLE, however, IL-2 also expanded CD8+ T cells capable of producing interleukin-5, interkeukin-13 (IL-13), and interferon-γ (IFN-γ) that occurred with enhanced expression of GATA-3 and phosphorylation of STAT6 but not STAT5. Our data pinpoint a safety signal for systemic administration of IL-2 and challenges a long-held conceptual platform of type 1 and 2 cytokine antagonism by newly documenting the IL-2-dependent development of IL-13 and IFN-γ double-positive (IL-13+IFNγ+) CD8+ T cells in SLE.Copyright © 2021 Kato and Perl.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Duration of Humoral and Cellular Immunity 8 Years After Administration of Reduced Doses of the 17DD-Yellow Fever Vaccine.

In Frontiers in Immunology on 12 July 2019 by da Costa-Rocha, I. A., Campi-Azevedo, A. C., et al.

The present study aims to determine whether 17DD-YF-specific humoral and cellular immunological memory is maintained 8-years after primary vaccination with subdoses (10,447IU;3,013IU;587IU;158IU;31IU). For this purpose, this follow-up study was carried out in a subset of volunteers (n = 98) originally enrolled in the dose-response study in 2009 and 46 non-vaccinated controls. Our results demonstrated that vaccinees, who had seroconverted following primary vaccination and had not been revaccinated, present similar neutralizing antibodies levels and YF-specific cellular memory, particularly CMCD4 and EMCD8 as compared to the reference full dose (27,476IU). Although, PRNT seropositivity rates were similar across subgroups (94, 82, 83, 94, 80, and 91%, correspondingly), only doses above 587IU elicited similar iterative proportion of seropositivity rates, calculated as a progressive decrease on seropositivity rates along time (89, 80, 80, and 91%, respectively) as compared to 158IU and 31IU (68 and 46%, respectively). Noteworthy were the strong positive correlations ("EMCD4,EMCD8" and "TNFCD8,IFNCD8") observed in most subdoses, except for 31IU. Major similarities underscored the preserved antibody titers and the outstanding levels of EMCD8, relevant correlates of protection for YF-specific immunity. These findings provide evidences to support the regular use of dose sparing strategy for YF vaccine in adults.

  • Immunology and Microbiology

Booster dose after 10 years is recommended following 17DD-YF primary vaccination.

In Human Vaccines Immunotherapeutics on 12 September 2015 by Campi-Azevedo, A. C., Costa-Pereira, C., et al.

A single vaccination of Yellow Fever vaccines is believed to confer life-long protection. In this study, results of vaccinees who received a single dose of 17DD-YF immunization followed over 10 y challenge this premise. YF-neutralizing antibodies, subsets of memory T and B cells as well as cytokine-producing lymphocytes were evaluated in groups of adults before (NVday0) and after (PVday30-45, PVyear1-4, PVyear5-9, PVyear10-11, PVyear12-13) 17DD-YF primary vaccination. YF-neutralizing antibodies decrease significantly from PVyear1-4 to PVyear12-13 as compared to PVday30-45, and the seropositivity rates (PRNT≥2.9Log10mIU/mL) become critical (lower than 90%) beyond PVyear5-9. YF-specific memory phenotypes (effector T-cells and classical B-cells) significantly increase at PVday30-45 as compared to naïve baseline. Moreover, these phenotypes tend to decrease at PVyear10-11 as compared to PVday30-45. Decreasing levels of TNF-α(+) and IFN-γ(+) produced by CD4(+) and CD8(+) T-cells along with increasing levels of IL-10(+)CD4(+)T-cells were characteristic of anti-YF response over time. Systems biology profiling represented by hierarchic networks revealed that while the naïve baseline is characterized by independent micro-nets, primary vaccinees displayed an imbricate network with essential role of central and effector CD8(+) memory T-cell responses. Any putative limitations of this cross-sectional study will certainly be answered by the ongoing longitudinal population-based investigation. Overall, our data support the current Brazilian national immunization policy guidelines that recommend one booster dose 10 y after primary 17DD-YF vaccination.

  • FC/FACS
  • Homo sapiens (Human)

The process for obtaining monoclonal antibodies against a specific antigen is very laborious, involves sophisticated technologies and it is not available in most research laboratories. Considering that most cytokines remain partially conserved among species during evolution, the search for antibody cross-reactivity is an important strategy for immunological studies in veterinary medicine. In this context, the amino acid sequence from human and canine cytokines have demonstrated 49-96 % homology, suggesting high probability of cross-reactivity amongst monoclonal antibodies. For this, 17 commercially available anti-human monoclonal antibodies [IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8 (#1, #2), IL-10, IL-12, IL-13, IL-17A, IFN-γ (#1, #2), TNF-α (#1, #2) and TGF-β], were evaluated in vitro for intracellular cytokine detection in a stimulated canine blood culture by flow cytometry and confocal microscopy. Lymphocytes from peripheral blood of healthy and two unhealthy dogs were analyzed.
Eleven anti-human mAbs [IL-1α, IL-4, IL-5, IL-6, IL-8 (#1, #2), IL-12, IL-17A, TNF-α (#1, #2) and TGF-β] cross-reacted against canine intracellular cytokines. The specificity of the assays was not affected after Fc-blocking. Three anti-human cytokine mAbs [IL-4, IL-8 (#2) and TGF-β] when evaluated by confocal microscopy also cross-reacted with intracellular canine cytokines. The identification of human mAbs that cross-reacted with canine cytokines may support their use as immunological biomarkers in veterinary medicine studies.
The identification of these 11 anti-human cytokine mAbs that cross-reacted with canine cytokines will be useful immunological biomarkers for pathological conditions by flow cytometry and fluorescence microscopy in dogs.

  • FC/FACS
  • Homo sapiens (Human)
  • Canis lupus familiaris (Domestic dog)
  • Cardiovascular biology
  • Veterinary Research

Matrix metalloproteinase-2 (MMP-2) is a proteolytic enzyme degrading the extracellular matrix and overexpressed by many tumors. Here, we documented the presence of MMP-2-specific CD4(+) T cells in tumor-infiltrating lymphocytes (TILs) from melanoma patients. Strikingly, MMP-2-specific CD4(+) T cells displayed an inflammatory T(H)2 profile, i.e., mainly secreting TNF-α, IL-4, and IL-13 and expressing GATA-3. Furthermore, MMP-2-conditioned dendritic cells (DCs) primed naïve CD4(+) T cells to differentiate into an inflammatory T(H)2 phenotype through OX40L expression and inhibition of IL-12p70 production. MMP-2 degrades the type I IFN receptor, thereby preventing STAT1 phosphorylation, which is necessary for IL-12p35 production. Active MMP-2, therefore, acts as an endogenous type 2 "conditioner" and may play a role in the observed prevalence of detrimental type 2 responses in melanoma.
Copyright © 2011 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb