Product Citations: 40

The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-week supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T cells. These observations coincided with increased BST2/tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T cells by HIV-1 envelope antibodies. Thus, metformin exerts pleiotropic effects on post-integration steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.
© 2024 The Authors.

  • Immunology and Microbiology

T cells are implicated in the pathophysiology of preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Specifically, maternal decidual T cells infiltrate the chorioamniotic membranes in chronic chorioamnionitis (CCA), a placental lesion considered to reflect maternal anti-fetal rejection, leading to preterm labor and birth. However, the phenotype and TCR repertoire of decidual T cells in women with preterm labor and CCA have not been investigated. In this study, we used phenotyping, TCR sequencing, and functional assays to elucidate the molecular characteristics and Ag specificity of T cells infiltrating the chorioamniotic membranes in women with CCA who underwent term or preterm labor. Phenotyping indicated distinct enrichment of human decidual effector memory T cell subsets in cases of preterm labor with CCA without altered regulatory T cell proportions. TCR sequencing revealed that the T cell repertoire of CCA is characterized by increased TCR richness and decreased clonal expansion in women with preterm labor. We identified 15 clones associated with CCA and compared these against established TCR databases, reporting that infiltrating T cells may possess specificity for maternal and fetal Ags, but not common viral Ags. Functional assays demonstrated that choriodecidual T cells can respond to maternal and fetal Ags. Collectively, our findings provide, to our knowledge, novel insight into the complex processes underlying chronic placental inflammation and further support a role for effector T cells in the mechanisms of disease for preterm labor and birth. Moreover, this work further strengthens the contribution of adaptive immunity to the syndromic nature of preterm labor and birth.
Copyright © 2023 by The American Association of Immunologists, Inc.

  • Homo sapiens (Human)
  • Immunology and Microbiology

The aryl hydrocarbon receptor (AhR) regulates Th17-polarized CD4+ T cell functions, but its role in HIV-1 replication/outgrowth remains unknown. Genetic (CRISPR-Cas9) and pharmacological inhibition reveal AhR as a barrier to HIV-1 replication in T cell receptor (TCR)-activated CD4+ T cells in vitro. In single-round vesicular stomatitis virus (VSV)-G-pseudotyped HIV-1 infection, AhR blockade increases the efficacy of early/late reverse transcription and subsequently facilitated integration/translation. Moreover, AhR blockade boosts viral outgrowth in CD4+ T cells of people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Finally, RNA sequencing reveals genes/pathways downregulated by AhR blockade in CD4+ T cells of ART-treated PLWH, including HIV-1 interactors and gut-homing molecules with AhR-responsive elements in their promoters. Among them, HIC1, a repressor of Tat-mediated HIV-1 transcription and a tissue-residency master regulator, is identified by chromatin immunoprecipitation as a direct AhR target. Thus, AhR governs a T cell transcriptional program controlling viral replication/outgrowth and tissue residency/recirculation, supporting the use of AhR inhibitors in "shock and kill" HIV-1 remission/cure strategies.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

A circulating subset of iNKT cells mediates antitumor and antiviral immunity.

In Science Immunology on 28 October 2022 by Cui, G., Shimba, A., et al.

Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244-CXCR6-), C1 (CD244-CXCR6+), or C2 (CD244+CXCR6+) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell-like features, whereas C1 iNKT cells showed more T cell-like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244+CXCR6+ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell-like properties distinct from conventional tissue-resident iNKT cells.

  • Immunology and Microbiology

Targeted plasma proteomics reveals upregulation of distinct inflammatory pathways in people living with HIV.

In IScience on 21 October 2022 by Vadaq, N., van de Wijer, L., et al.

Despite antiretroviral therapy (ART), people living with HIV (PLHIV) display persistent inflammation leading to non-AIDS-related co-morbidities. To better understand underlying mechanisms, we compared targeted plasma inflammatory protein concentration (n = 92) between a cohort of 192 virally suppressed PLHIV, who were followed-up for five years, and 416 healthy controls (HC). Findings were validated in an independent cohort of 649 virally suppressed PLHIV and 98 HC. Compared to HC, PLHIV exhibited distinctively upregulated inflammatory proteins, including mucosal defense chemokines, CCR5 and CXCR3 ligands, and growth factors. Unsupervised clustering of inflammatory proteins clearly differentiated PLHIV with low (n = 123) and high inflammation (n = 65), the latter having a 3.4 relative risk (95% confidence interval 1.2-9.8) to develop malignancies and trend for cardiovascular events during a 5-year follow-up. The best protein predictors discriminating the two inflammatory endotypes were PD-L1, VEGFA, LAP TGF β-1, and TNFRSF9. Our data provide insights into co-morbidities associated inflammatory changes in PLHIV on long-term ART.
© 2022 The Authors.

  • Immunology and Microbiology
View this product on CiteAb