Product Citations: 30

Single-cell transcriptomics of bronchoalveolar lavage during PRRSV infection with different virulence.

In Nature Communications on 28 January 2025 by Lim, B., Kim, S. C., et al.

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the global swine industry due to its high genetic diversity and different virulence levels, which complicate disease management and vaccine development. This study evaluated longitudinal changes in the immune cell composition of bronchoalveolar lavage fluid and the clinical outcomes across PRRSV strains with varying virulence, using techniques including single-cell transcriptomics. In highly virulent infection, faster viral replication results in an earlier peak lung-damage time point, marked by significant interstitial pneumonia, a significant decrease in macrophages, and an influx of lymphocytes. Viral tracking reveals less than 5% of macrophages are directly infected, and further analysis indicates bystander cell death, likely regulated by exosomal microRNAs as a significant factor. In contrast, the peak intermediate infection shows a delayed lung-damage time point with fewer cell population modifications. Furthermore, anti-inflammatory M2-like macrophages (SPP1-CXCL14high) are identified and their counts increase during the peak lung-damage time point, likely contributing to local defense and lung recovery, which is not observed in high virulent infection. These findings provide a comprehensive description of the immune cellular landscape and differential PRRSV virulence mechanisms, which will help build new hypotheses to understand PRRSV pathogenesis and other respiratory infections.
© 2025. The Author(s).

  • FC/FACS
  • Sus scrofa domesticus (Domestic pig)
  • Immunology and Microbiology

Diarrhoea and preweaning mortality in piglets are crucial factors impacting the economic sustainability of the swine industry. Pathogenic infections are among the main causes of diarrhea and mortality. Group 3 innate lymphoid cells (ILC3s) are crucial for safeguarding against pathogenic infections. However, knowledge regarding the development and function of ILC3s in suckling piglets is currently limited. Our findings demonstrate that the development of ILC3s in suckling piglets gradually progresses from day 1 to day 21, with a notable increase observed on day 28. Additionally, the development of NKp46+ILC3s and the production of interleukin (IL)-17A by ILC3s displayed consistent patterns with the changes observed in ILC3s. Notably, interferon (IFN)-γ levels significantly increased on day 14. Moreover, the production of IFN-γ by NKp46+ILC3s was greater than that by NKp46-ILC3s. Importantly, when piglets were subjected to a 4-h challenge with enterotoxigenic Escherichia coli, both the percentages of ILC3s significantly increased, accompanied by increased IL-22 production, highlighting their importance in maintaining intestinal health. The outcomes of this study provide valuable insights for future related research.
© 2024. The Author(s).

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology
  • Veterinary Research

The influence of iron nutrition on the development of intestine and immune cell divergency in neonatal pigs.

In Journal of Animal Science and Biotechnology on 11 August 2024 by Liu, Y., Wu, A., et al.

Appropriate iron supplementation is essential for neonatal growth and development. However, there are few reports on the effects of iron overload on neonatal growth and immune homeostasis. Thus, the aim of this study was to investigate the effects of iron nutrition on neonatal growth and intestinal immunity by administering different levels of iron to neonatal pigs.
We found that iron deficiency and iron overload resulted in slow growth in neonatal pigs. Iron deficiency and iron overload led to down-regulation of jejunum intestinal barrier and antioxidant marker genes, and promoted CD8+ T cell differentiation in jejunum and mesenteric lymph nodes (MLN) of pigs, disrupting intestinal health. Moreover, iron levels altered serum iron and tissue iron status leading to disturbances in redox state, affecting host innate and adaptive immunity.
These findings emphasized the effect of iron nutrition on host health and elucidated the importance of iron in regulating redox state and immunity development. This study provided valuable insights into the regulation of redox state and immune function by iron metabolism in early life, thus contributing to the development of targeted interventions and nutritional strategies to optimize iron nutrition in neonates.
© 2024. The Author(s).

  • FC/FACS
  • Sus scrofa domesticus (Domestic pig)
  • Immunology and Microbiology
  • Veterinary Research

Porcine epidemic diarrhea virus (PEDV) causes a highly contagious enteric disease with major economic losses to swine production worldwide. Due to the immaturity of the neonatal piglet immune system and given the high virulence of PEDV, improving passive lactogenic immunity is the best approach to protect suckling piglets against the lethal infection. We tested whether oral vitamin A (VA) supplementation and PEDV exposure of gestating and lactating VA-deficient (VAD) sows would enhance their primary immune responses and boost passive lactogenic protection against the PEDV challenge of their piglets. We demonstrated that PEDV inoculation of pregnant VAD sows in the third trimester provided higher levels of lactogenic protection of piglets as demonstrated by >87% survival rates of their litters compared with <10% in mock litters and that VA supplementation to VAD sows further improved the piglets' survival rates to >98%. We observed significantly elevated PEDV IgA and IgG antibody (Ab) titers and Ab-secreting cells (ASCs) in VA-sufficient (VAS)+PEDV and VAD+VA+PEDV sows, with the latter maintaining higher Ab titers in blood prior to parturition and in blood and milk throughout lactation. The litters of VAD+VA+PEDV sows also had the highest serum PEDV-neutralizing Ab titers at piglet post-challenge days (PCD) 0 and 7, coinciding with higher PEDV IgA ASCs and Ab titers in the blood and milk of their sows, suggesting an immunomodulatory role of VA in sows. Thus, sows that delivered sufficient lactogenic immunity to their piglets provided the highest passive protection against the PEDV challenge. Maternal immunization during pregnancy (± VA) and VA sufficiency enhanced the sow primary immune responses, expression of gut-mammary gland trafficking molecules, and passive protection of their offspring. Our findings are relevant to understanding the role of VA in the Ab responses to oral attenuated vaccines that are critical for successful maternal vaccination programs against enteric infections in infants and young animals.
Copyright © 2024 Amimo, Michael, Chepngeno, Jung, Raev, Paim, Lee, Damtie, Vlasova and Saif.

  • FC/FACS
  • Immunology and Microbiology
  • Veterinary Research

Toxicology, pharmacokinetics, and immunogenicity studies of CCR4-IL2 bispecific immunotoxin in rats and minipigs.

In European Journal of Pharmacology on 5 April 2024 by Wang, Z., Ramakrishna, R., et al.

We have developed a diphtheria toxin-based recombinant human CCR4-IL2 bispecific immunotoxin (CCR4-IL2-IT) for targeted therapy of cutaneous T-cell lymphoma (CTCL). CCR4-IL2-IT demonstrated superior efficacy in an immunodeficient mouse CTCL model. Recently, we have compared the in vivo efficacy of CCR4-IL2-IT versus Brentuximab (FDA approved leading drug in CTCL market) in the same immunodeficient mouse CTCL model. The comparison demonstrated that CCR4-IL2-IT was significantly more effective than Brentuximab. In this study, we have performed non-GLP (Good Laboratory Practice) toxicology, pharmacokinetics, immunogenicity studies of CCR4-IL2-IT in both rats and minipigs. CCR4-IL2-IT demonstrated excellent safety profiles in both rats and minipigs. The maximum tolerated dose of CCR4-IL2-IT was determined as 0.4 mg/kg in both rats and minipigs. Complete blood count and chemistry analysis did not show significant difference for all measured parameters between the blood samples of pre-injection versus post-injection from the five-day toxicology studies of CCT4-IL2-IT in both rats and minipigs. Histology analysis did not show difference between the PBS treatment group versus CCR4-IL2-IT treatment group at 50 μg/kg in both rats and minipigs. The half-life of CCR4-IL2-IT was determined as about 45 min in rats and 30 min in minipigs. The antibodies against CCR4-IL2-IT were detected in about two weeks after CCR4-IL2-IT treatment. CCR4-IL2-IT did not induce cytokine release syndrome in a peripheral blood mononuclear cell derived humanized mouse model. The depletion of CCR4+ cell and CD25+ cell (two target cell populations of CCR4-IL2-IT) was observed in minipigs. The excellent safety profile promoted us to further develop CCR4-IL2-IT towards clinical trials.
Copyright © 2024 Elsevier B.V. All rights reserved.

  • Immunology and Microbiology
  • Pharmacology
View this product on CiteAb