Product Citations: 13

Innate cell markers that predict anti-HIV neutralizing antibody titers in vaccinated macaques.

In Cell Reports Medicine on 18 October 2022 by Van Tilbeurgh, M., Maisonnasse, P., et al.

Given the time and resources invested in clinical trials, innovative prediction methods are needed to decrease late-stage failure in vaccine development. We identify combinations of early innate responses that predict neutralizing antibody (nAb) responses induced in HIV-Env SOSIP immunized cynomolgus macaques using various routes of vaccine injection and adjuvants. We analyze blood myeloid cells before and 24 h after each immunization by mass cytometry using a three-step clustering, and we discriminate unique vaccine signatures based on HLA-DR, CD39, CD86, CD11b, CD45, CD64, CD14, CD32, CD11c, CD123, CD4, CD16, and CADM1 surface expression. Various combinations of these markers characterize cell families positively associated with nAb production, whereas CADM1-expressing cells are negatively associated (p < 0.05). Our results demonstrate that monitoring immune signatures during early vaccine development could assist in identifying biomarkers that predict vaccine immunogenicity.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • COVID-19
  • Immunology and Microbiology

The obesity epidemic significantly contributes to overall morbidity and mortality. Bariatric surgery is the gold standard treatment for obesity and metabolic dysfunction, yet the mechanisms by which it exerts metabolic benefit remain unclear. Here, we demonstrate a model of vertical sleeve gastrectomy (VSG) in nonhuman primates (NHP) that mimics the complexity and outcomes in humans. We also show that VSG confers weight loss and durable metabolic benefit, where equivalent caloric intake in shams resulted in significant weight gain following surgery. Furthermore, we show that VSG is associated with early, weight-independent increases in bile acids, short-chain fatty acids, and reduced visceral adipose tissue (VAT) inflammation with a polarization of VAT-resident immunocytes toward highly regulatory myeloid cells and Tregs. These data demonstrate that this strongly translational NHP model can be used to interrogate factors driving successful intervention to unravel the interplay between physiologic systems and improve therapies for obesity and metabolic syndrome.© 2021 The Author(s).

  • Biochemistry and Molecular biology

Human mononuclear phagocytes comprise phenotypically and functionally overlapping subsets of dendritic cells (DCs) and monocytes, but the extent of their heterogeneity and distinct markers for subset identification remains elusive. By integrating high-dimensional single-cell protein and RNA expression data, we identified distinct markers to delineate monocytes from conventional DC2 (cDC2s). Using CD88 and CD89 for monocytes and HLA-DQ and FcεRIα for cDC2s allowed for their specific identification in blood and tissues. We also showed that cDC2s could be subdivided into phenotypically and functionally distinct subsets based on CD5, CD163, and CD14 expression, including a distinct subset of circulating inflammatory CD5-CD163+CD14+ cells related to previously defined DC3s. These inflammatory DC3s were expanded in systemic lupus erythematosus patients and correlated with disease activity. These findings further unravel the heterogeneity of DC subpopulations in health and disease and may pave the way for the identification of specific DC subset-targeting therapies.
Copyright © 2019 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner.

In The Journal of Biological Chemistry on 1 June 2018 by Melo-González, F., Fenton, T. M., et al.

Cross-talk between different components of the intestinal barrier and the immune system may be important in maintaining gut homeostasis. A crucial part of the gut barrier is the mucus layer, a cross-linked gel on top of the intestinal epithelium that consists predominantly of the mucin glycoprotein MUC2. However, whether the mucin layer actively regulates intestinal immune cell responses is not clear. Because recent evidence suggests that intestinal dendritic cells (DCs) may be regulated by the mucus layer, we purified intestinal mucin, incubated it with human DCs, and determined the functional effects. Here we show that expression of the chemokine IL-8 and co-stimulatory DC markers CD86 and CD83 are significantly up-regulated on human DCs in the presence of intestinal mucins. Additionally, mucin-exposed DCs promoted neutrophil migration in an IL-8-dependent manner. The stimulatory effects of mucins on DCs were not due to mucin sample contaminants such as lipopolysaccharide, DNA, or contaminant proteins. Instead, mucin glycans are important for the pro-inflammatory effects on DCs. Thus, intestinal mucins are capable of inducing important pro-inflammatory functions in DCs, which could be important in driving inflammatory responses upon intestinal barrier damage.
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology
View this product on CiteAb