Product Citations: 8

Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I receptor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific pathogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK) cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dissemination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.

  • Immunology and Microbiology

Qa-1-Restricted CD8+ T Cells Can Compensate for the Absence of Conventional T Cells during Viral Infection.

In Cell Reports on 9 April 2019 by Anderson, C. K., Reilly, E. C., et al.

The role of non-classical T cells during viral infection remains poorly understood. Using the well-established murine model of CMV infection (MCMV) and mice deficient in MHC class Ia molecules, we found that non-classical CD8+ T cells robustly expand after MCMV challenge, become highly activated effectors, and are capable of forming durable memory. Interestingly, although these cells are restricted by MHC class Ib molecules, they respond similarly to conventional T cells. Remarkably, when acting as the sole component of the adaptive immune response, non-classical CD8+ T cells are sufficient to protect against MCMV-induced lethality. We also demonstrate that the MHC class Ib molecule Qa-1 (encoded by H2-T23) restricts a large, and critical, portion of this population. These findings reveal a potential adaptation of the host immune response to compensate for viral evasion of classical T cell immunity.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

NKG2A is a NK cell exhaustion checkpoint for HCV persistence.

In Nature Communications on 3 April 2019 by Zhang, C., Wang, X. M., et al.

Exhaustion of cytotoxic effector natural killer (NK) and CD8+ T cells have important functions in the establishment of persistent viral infections, but how exhaustion is induced during chronic hepatitis C virus (HCV) infection remains poorly defined. Here we show, using the humanized C/OTg mice permissive for persistent HCV infection, that NK and CD8+ T cells become sequentially exhausted shortly after their transient hepatic infiltration and activation in acute HCV infection. HCV infection upregulates Qa-1 expression in hepatocytes, which ligates NKG2A to induce NK cell exhaustion. Antibodies targeting NKG2A or Qa-1 prevents NK exhaustion and promotes NK-dependent HCV clearance. Moreover, reactivated NK cells provide sufficient IFN-γ that helps rejuvenate polyclonal HCV CD8+ T cell response and clearance of HCV. Our data thus show that NKG2A serves as a critical checkpoint for HCV-induced NK exhaustion, and that NKG2A blockade sequentially boosts interdependent NK and CD8+ T cell functions to prevent persistent HCV infection.

Multiple receptors converge on H2-Q10 to regulate NK and γδT-cell development.

In Immunology and Cell Biology on 1 March 2019 by Goodall, K. J., Nguyen, A., et al.

Class Ib major histocompatibility complex (MHC) is an extended family of molecules, which demonstrate tissue-specific expression and presentation of monomorphic antigens. These characteristics tend to imbue class Ib MHC with unique functions. H2-Q10 is potentially one such molecule that is overexpressed in the liver but its immunological function is not known. We have previously shown that H2-Q10 is a ligand for the natural killer cell receptor Ly49C and now, using H2-Q10-deficient mice, we demonstrate that H2-Q10 can also stabilize the expression of Qa-1b. In the absence of H2-Q10, the development and maturation of conventional hepatic natural killer cells is disrupted. We also provide evidence that H2-Q10 is a new high affinity ligand for CD8αα and controls the development of liver-resident CD8αα γδT cells. These data demonstrate that H2-Q10 has multiple roles in the development of immune subsets and identify an overlap of recognition within the class Ib MHC that is likely to be relevant to the regulation of immunity.
© 2018 Australasian Society for Immunology Inc.

  • Immunology and Microbiology

A number of nonclassical MHC Ib molecules recognizing distinct microbial antigens have been implicated in the immune response to Mycobacterium tuberculosis (Mtb). HLA-E has been identified to present numerous Mtb peptides to CD8+ T cells, with multiple HLA-E-restricted cytotoxic T lymphocyte (CTL) and regulatory T cell lines isolated from patients with active and latent tuberculosis (TB). In other disease models, HLA-E and its mouse homolog Qa-1 can act as antigen presenting molecules as well as regulators of the immune response. However, it is unclear what precise role(s) HLA-E/Qa-1 play in the immune response to Mtb. In this study, we found that murine Qa-1 can bind and present Mtb peptide antigens to CD8+ T effector cells during aerosol Mtb infection. Further, mice lacking Qa-1 (Qa-1-/-) were more susceptible to high-dose Mtb infection compared to wild-type controls, with higher bacterial burdens and increased mortality. The increased susceptibility of Qa-1-/- mice was associated with dysregulated T cells that were more activated and produced higher levels of pro-inflammatory cytokines. T cells from Qa-1-/- mice also had increased expression of inhibitory and apoptosis-associated cell surface markers such as CD94/NKG2A, KLRG1, PD-1, Fas-L, and CTLA-4. As such, they were more prone to cell death and had decreased capacity in promoting the killing of Mtb in infected macrophages. Lastly, comparing the immune responses of Qa-1 mutant knock-in mice deficient in either Qa-1-restricted CD8+ Tregs (Qa-1 D227K) or the inhibitory Qa-1-CD94/NKG2A interaction (Qa-1 R72A) with Qa-1-/- and wild-type controls indicated that both of these Qa-1-mediated mechanisms were involved in suppression of the immune response in Mtb infection. Our findings reveal that Qa-1 participates in the immune response to Mtb infection by presenting peptide antigens as well as regulating immune responses, resulting in more effective anti-Mtb immunity.

  • Immunology and Microbiology
View this product on CiteAb