Product Citations: 43

Immunogenomic profiling of circulating T cells in pediatric cancer patients during standard-of-care

Preprint on BioRxiv : the Preprint Server for Biology on 13 January 2025 by Nabbi, A., Jiang, Y., et al.

While pediatric cancer patients receive intensive chemotherapy, its impact on peripheral T cells and subsequently to disease outcomes are not fully characterized. Here, we assessed T-cell dynamics during treatment, identifying associations with outcomes through immune phenotyping and T-cell Receptor (TCR) sequencing in pediatric solid and hematologic malignancies. We show that while levels of immune checkpoint proteins (PD-1, LAG3, and TIM3) at baseline were highest in lymphomas compared to other cancer groups, they increased significantly in response to therapy in all cancers. Levels of Central Memory (CM) T cells increased in leukemias and solid tumors, while naïve T cells and cell-free TCR diversity decreased in lymphomas. By combining immune cell and TCR repertoire features across all timepoints, we proposed the Dynamic Immunogenomic Score (DIS) to measure patient-specific effects of therapy on the peripheral T-cell population. Higher DIS was associated with high-risk cancer types and logistic regression analysis revealed it may predict incidence of relapse in leukemia patients. TCR specificity analysis revealed patient-specific clonal dynamics and differential detection of virally-associated TCRs in cancer patients compared to healthy individuals. Our results highlight the potential of early upfront immunogenomic profiling in identifying high-risk patients that may be predictive in light of emerging cellular immunotherapies.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment.
We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand.
We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models.
Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation.
NCT00068003, NCT01174121, and NCT03412877.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Cancer Research

Third-party cytomegalovirus-specific T cells improved survival in refractory cytomegalovirus viremia after hematopoietic transplant.

In The Journal of Clinical Investigation on 15 May 2023 by Prockop, S. E., Hasan, A., et al.

BackgroundRefractory CMV viremia and disease are associated with significant morbidity and mortality in recipients of hematopoietic stem cell transplant (HCT).MethodsIn phase I/II trials, we treated 67 subjects for CMV viremia or disease arising after HCT with adoptive transfer of banked, third-party, CMVpp65-sensitized T cells (CMVpp65-VSTs). All were evaluable for toxicity and 59 for response. Evaluable subjects had CMV disease or persisting viremia that had failed at least 2 weeks of induction therapy with a median of 3 antiviral drugs; 84.7% had more than 3 of 11 high-risk features. CMVpp65-VSTs were specific for 1 to 3 CMVpp65 epitopes, presented by a limited set of HLA class I or II alleles, and were selected based on high-resolution HLA matching at 2 of 10 HLA alleles and matching for subject and subject's HCT donor for 1 or more alleles through which the CMVpp65-VSTs were restricted.ResultsT cell infusions were well tolerated. Of 59 subjects evaluable for response, 38 (64%) achieved complete or durable partial responses.ConclusionsRecipients responding to CMVpp65VSTs experienced an improved overall survival. Of the risk factors evaluated, transplant type, recipient CD4+ and CD8+ T cell levels prior to adoptive therapy, and the HLA restriction of CMVpp65-VSTs infused each significantly affected responses. In addition, CMVpp65-specific T cells of HCT donor or recipient origin contributed to the durability of both complete and partial responses.Trial RegistrationNCT00674648; NCT01646645; NCT02136797 (NIH).FundingNIH (P01 CA23766, R21 CA162002 and P30 CA008748); Aubrey Fund; Claire Tow Foundation; Major Family Foundation; "Rick" Eisemann Pediatric Research Fund; Banbury Foundation; Edith Robertson Foundation; Larry Smead Foundation.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Reprogramming of Tumor-reactive Tumor-infiltrating Lymphocytes to Human-induced Pluripotent Stem Cells.

In Cancer Res Commun on 1 May 2023 by Islam, S. M. R., Maeda, T., et al.

Tumor-infiltrating lymphocytes (TIL) that can recognize and kill tumor cells have curative potential in subsets of patients treated with adoptive cell transfer (ACT). However, lack of TIL therapeutic efficacy in many patients may be due in large part to a paucity of tumor-reactive T cells in TIL and the exhausted and terminally differentiated status of those tumor-reactive T cells. We sought to reprogram exhausted TIL that possess T-cell receptors (TCR) specific for tumor antigens into induced pluripotent stem cells (iPSC) to rejuvenate them for more potent ACT. We first attempted to reprogram tumor neoantigen-specific TIL by αCD3 Ab prestimulation which resulted in failure of establishing tumor-reactive TIL-iPSCs, instead, T cell-derived iPSCs from bystander T cells were established. To selectively activate and enrich tumor-reactive T cells from the heterogenous TIL population, CD8+ PD-1+ 4-1BB+ TIL population were isolated after coculture with autologous tumor cells, followed by direct reprogramming into iPSCs. TCR sequencing analysis of the resulting iPSC clones revealed that reprogrammed TIL-iPSCs encoded TCRs that were identical to the pre-identified tumor-reactive TCRs found in minimally cultured TIL. Moreover, reprogrammed TIL-iPSCs contained rare tumor antigen-specific TCRs, which were not detectable by TCR sequencing of the starting cell population. Thus, reprogramming of PD-1+ 4-1BB+ TIL after coculture with autologous tumor cells selectively generates tumor antigen-specific TIL-iPSCs, and is a distinctive method to enrich and identify tumor antigen-specific TCRs of low frequency from TIL.
Reprogramming of TIL into iPSC holds great promise for the future treatment of cancer due to their rejuvenated nature and the retention of tumor-specific TCRs. One limitation is the lack of selective and efficient methods for reprogramming tumor-specific T cells from polyclonal TIL. Here we addressed this limitation and present a method to efficiently reprogram TIL into iPSC colonies carrying diverse tumor antigen reactive TCR recombination.
© 2023 The Authors; Published by the American Association for Cancer Research.

  • Cancer Research
  • Stem Cells and Developmental Biology

SARS-CoV-2 has infected over 753 million individuals and caused more than 6.8 million deaths globally to date. COVID-19 disease severity has been associated with SARS-CoV-2 induced hyper inflammation and the immune correlation with its pathogenesis remains unclear. Acute viral infection is characterised by vigorous coordinated innate and adaptive activation, including an early cellular response that correlates well with the amplitude of virus specific humoral response.
The present study covers a wide spectrum of cellular immune response against COVID-19, irrespective of infection and vaccination.
We analysed immune status of (a) COVID-19 hospitalised patients including deceased and recovered patients, and compared with home isolated and non-infected healthy individuals, and (b) infected home isolated individuals with vaccinated individuals, using flow cytometry. We performed flow cytometry analysis of PBMCs to determine non-specific cell-mediated immune response.
The immune response revealed extensive induction and activation of multiple immune lineages, including T and B cells, Th17 regulatory subsets and M1, M2 macrophages in deceased and hospitalised recovered patients, vaccinated and healthy individuals. Compromised immune cell expression was observed in deceased patients even in later stages, while expression was restored in hospitalised recovered patients and home isolated individuals.
The findings associated with recovery and convalescence define a new signature of cellular immune response that persists in individuals with SARS-CoV-2 infection and vaccination. The findings will help in providing a better understanding of COVID-19 disease and will aid in developing better therapeutic strategies for treatment.
Copyright © 2023. Published by Elsevier GmbH.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb