Product Citations: 9

Genetic determinants underlying most human blood groups are now clarified but variation in expression levels remains largely unexplored. By developing a bioinformatics pipeline analyzing GATA1/Chromatin immunoprecipitation followed by sequencing (ChIP-seq) datasets, we identify 193 potential regulatory sites in 33 blood-group genes. As proof-of-concept, we aimed to delineate the low-expressing complement receptor 1 (CR1) Helgeson phenotype on erythrocytes, which is correlated with several diseases and protects against severe malaria. We demonstrate that two candidate CR1 enhancer motifs in intron 4 bind GATA1 and drive transcription. Both are functionally abolished by naturally-occurring SNVs. Erythrocyte CR1-mRNA and CR1 levels correlate dose-dependently with genotype of one SNV (rs11117991) in two healthy donor cohorts. Haplotype analysis of rs11117991 with previously proposed markers for Helgeson shows high linkage disequilibrium in Europeans but explains the poor prediction reported for Africans. These data resolve the longstanding debate on the genetic basis of inherited low CR1 and form a systematic starting point to investigate the blood group regulome.
© 2023. Springer Nature Limited.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology

Papillon-Lefèvre Syndrome (PLS) is an autosomal recessive monogenic disease caused by loss-of-function mutations in the CTSC gene, thus preventing the synthesis of the protease Cathepsin C (CTSC) in a proteolytically active form. CTSC is responsible for the activation of the pro-forms of the neutrophil serine proteases (NSPs; Elastase, Proteinase 3 and Cathepsin G), suggesting its involvement in a variety of neutrophil functions. In PLS neutrophils, the lack of CTSC protease activity leads to inactivity of the NSPs. Clinically, PLS is characterized by an early, typically pre-pubertal, onset of severe periodontal pathology and palmoplantar hyperkeratosis. However, PLS is not considered an immune deficiency as patients do not typically suffer from recurrent and severe (bacterial and fungal) infections. In this study we investigated an unusual CTSC mutation in two siblings with PLS, a 503A>G substitution in exon 4 of the CTSC gene, expected to result in an amino acid replacement from tyrosine to cysteine at position 168 of the CTSC protein. Both patients bearing this mutation presented with pronounced periodontal pathology. The characteristics and functions of neutrophils from patients homozygous for the 503A>G CTSC mutation were compared to another previously described PLS mutation (755A>T), and a small cohort of healthy volunteers. Neutrophil lysates from patients with the 503A>G substitution lacked CTSC protein and did not display any CTSC or NSP activity, yet neutrophil counts, morphology, priming, chemotaxis, radical production, and regulation of apoptosis were without any overt signs of alteration. However, NET formation upon PMA-stimulation was found to be severely depressed, but not abolished, in PLS neutrophils.

  • FC/FACS
  • Homo sapiens (Human)

E-cigarettes and health risks: more to the flavor than just the name.

In American Journal of Physiology - Lung Cellular and Molecular Physiology on 1 April 2021 by Ween, M. P., Moshensky, A., et al.

The growing interest in regulating flavored E-liquids must incorporate understanding of the "flavoring profile" of each E-liquid-which flavorings (flavoring chemicals) are present and at what concentrations not just focusing on the flavor on the label. We investigated the flavoring profile of 10 different flavored E-liquids. We assessed bronchial epithelial cell viability and apoptosis, phagocytosis of bacteria and apoptotic cells by macrophages after exposure to E-cigarette vapor extract (EVE). We validated our data in normal human bronchial epithelial cells (NHBE) and alveolar macrophages (AM) from healthy donors. We also assessed cytokine release and validated in the saliva from E-cigarette users. Increased necrosis/apoptosis (16.1-64.5% apoptosis) in 16HBE cells was flavor dependent, and NHBEs showed an increased susceptibility to flavors. In THP-1 differentiated macrophages phagocytosis was also flavor dependent, with AM also showing increased susceptibility to flavors. Further, Banana and Chocolate were shown to reduce surface expression of phagocytic target recognition receptors on alveolar macrophages. Banana and Chocolate increased IL-8 secretion by NHBE, whereas all 4 flavors reduced AM IL-1β secretion, which was also reduced in the saliva of E-cigarette users compared with healthy controls. Flavorant profiles of E-liquids varied from simple 2 compound mixtures to complex mixtures containing over a dozen flavorants. E-liquids with high benzene content, complex flavoring profiles, high chemical concentration had the greatest impacts. The Flavorant profile of E-liquids is key to disruption of the airway status quo by increasing bronchial epithelial cell apoptosis, causing alveolar macrophage phagocytic dysfunction, and altering airway cytokines.

  • Endocrinology and Physiology

The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection.

In Nature Communications on 23 February 2021 by Askarian, F., Uchiyama, S., et al.

The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.

  • FC/FACS
  • Immunology and Microbiology

The Orphan Immune Receptor LILRB3 Modulates Fc Receptor-Mediated Functions of Neutrophils.

In The Journal of Immunology on 15 February 2020 by Zhao, Y., van Woudenbergh, E., et al.

Neutrophils are critical to the generation of effective immune responses and for killing invading microbes. Paired immune receptors provide important mechanisms to modulate neutrophil activation thresholds and effector functions. Expression of the leukocyte Ig-like receptor (LILR)A6 (ILT8/CD85b) and LILRB3 (ILT5/CD85a) paired-receptor system on human neutrophils has remained unclear because of the lack of specific molecular tools. Additionally, there is little known of their possible functions in neutrophil biology. The objective of this study was to characterize expression of LILRA6/LILRB3 receptors during human neutrophil differentiation and activation, and to assess their roles in modulating Fc receptor-mediated effector functions. LILRB3, but not LILRA6, was detected in human neutrophil lysates following immunoprecipitation by mass spectrometry. We demonstrate high LILRB3 expression on the surface of resting neutrophils and release from the surface following neutrophil activation. Surface expression was recapitulated in a human PLB-985 cell model of neutrophil-like differentiation. Continuous ligation of LILRB3 inhibited key IgA-mediated effector functions, including production of reactive oxygen species, phagocytic uptake, and microbial killing. This suggests that LILRB3 provides an important checkpoint to control human neutrophil activation and their antimicrobial effector functions during resting and early-activation stages of the neutrophil life cycle.
Copyright © 2020 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology
View this product on CiteAb