Product Citations: 7

Simultaneous blastic plasmacytoid dendritic cell neoplasm and myelofibrosis: A case report.

In Oncology Letters on 1 May 2024 by Luo, F., Li, B., et al.

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an extremely rare and aggressive tumor with an unknown pathogenesis. Myelofibrosis (MF) is a type of myeloproliferative neoplasm. MF can be secondary to several hematological malignancies, including chronic myeloid leukemia, myelodysplastic syndrome and hairy cell leukemia. In the present report, a rare case of BPDCN secondary to MF is described. A 70-year-old male patient developed a large purplish-red rash with recurrent symptoms. BPDCN was confirmed by immunohistochemistry of a biopsy specimen and flow cytometry of bone marrow cells. Bone marrow histopathology revealed MF. Next-generation sequencing of peripheral blood revealed mutations in the Tet methylcytosine dioxygenase 2 and NRAS proto-oncogene GTPase genes. The patient underwent one cycle of chemoimmunotherapy, but the condition progressed, an infection developed and the patient eventually died. The present case suggests that BPDCN can occur in conjunction with MF and that the prognosis of such patients is poor. Pathological examination and genetic testing aided in the diagnosis and treatment. This case emphasizes the need to raise awareness of BPDCN among clinicians and to be alert to the potential for fatal infection in patients with BPDCN combined with MF following myelosuppression triggered during chemotherapy.
Copyright: © 2024 Luo et al.

  • Cancer Research
  • Immunology and Microbiology

Phenotypic and functional characterization of pharmacologically expanded Vγ9Vδ2 T cells in pigtail macaques.

In IScience on 17 March 2023 by Barber-Axthelm, I. M., Wragg, K. M., et al.

While gaining interest as treatment for cancer and infectious disease, the clinical efficacy of Vγ9Vδ2 T cell-based immunotherapeutics has to date been limited. An improved understanding of γδ T cell heterogeneity across lymphoid and non-lymphoid tissues, before and after pharmacological expansion, is required. Here, we describe the phenotype and tissue distribution of Vγ9Vδ2 T cells at steady state and following in vivo pharmacological expansion in pigtail macaques. Intravenous phosphoantigen administration with subcutaneous rhIL-2 drove robust expansion of Vγ9Vδ2 T cells in blood and pulmonary mucosa, while expansion was confined to the pulmonary mucosa following intratracheal antigen administration. Peripheral blood Vγ9Vδ2 T cell expansion was polyclonal, and associated with a significant loss of CCR6 expression due to IL-2-mediated receptor downregulation. Overall, we show the tissue distribution and phenotype of in vivo pharmacologically expanded Vγ9Vδ2 T cells can be altered based on the antigen administration route, with implications for tissue trafficking and the clinical efficacy of Vγ9Vδ2 T cell immunotherapeutics.
© 2023 The Author(s).

  • Immunology and Microbiology

Natural killer (NK) cells play a key role in innate immunity and are regarded as a promising candidate for cellular immunotherapy. Natural killer cells may be generated from different sources, including induced pluripotent stem cells (iPSCs); these stem cells produce an abundant amount of NK cells to meet the needs of a wide range of clinical applications. Autologous iPSCs are expensive and labor-intensive to prepare, while allogeneic iPSCs require human leukocyte antigen (HLA) matched cells to avoid the risk of immune rejection. In the current study, we prepared HLA-matched iPSCs using HLA common haplotype homozygous (HLAh) donors from cryopreserved human cord blood (CB) sourced from the Tianjin Cord Blood Public Bank. This approach was designed to generate a CB-derived iPSC library from HLAh donors and use it to produce off-the-shelf NK cells. Starting with readily available cryopreserved CB mononuclear cells (cryoCBMCs), we produced cryoCBMC-derived iPSCs (cryoCB-iPSCs). These cryoCB-iPSCs were induced to generate embryoid bodies (EBs) using an improved 3D suspension culture method, and induced NK (iNK) cells were differentiated from EBs. iNK cells expressed specific surface markers of NK cells, exhibited cytotoxicity comparable with NK cells generated from CB (CB-NK) and peripheral blood (PB-NK), and expressed lower levels of KIRs and HLA-DR compared to CB-NK and PB-NK. Taken together, we have shown that an iPSC library can be established from HLAh cryoCBMCs, and cryoCB-iPSCs can be used to generate a large number of 'universal' NK cells for future clinical applications.
© 2022 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  • FC/FACS
  • Cardiovascular biology
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Vast Self-Renewal Potential of Human AGM Region HSCs Dramatically Declines in the Umbilical Cord Blood.

In Stem Cell Reports on 13 October 2020 by Ivanovs, A., Rybtsov, S., et al.

Human hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region during Carnegie stages (CS) 14-17. Although we previously reported that these HSCs can generate no less than 300 daughter HSCs, their actual number has never been established. Here, we show that a single human AGM region HSC can generate 600-1,600 functional daughter HSCs. The presence of HSCs in the CS 17 liver in one case gave us a unique opportunity to describe a reduction of HSC self-renewal potential after liver colonization. From a clinical perspective, the efficacy of long-term hematopoietic regeneration depends on HSC self-renewal capacity. We quantitatively show that this capacity dramatically declines in the umbilical cord blood compared with HSCs in the AGM region. A full appreciation of the vast regenerative potential of the first human embryo-derived HSCs sets a new bar for generation of clinically useful HSCs from pluripotent stem cells.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

  • Cardiovascular biology
  • Stem Cells and Developmental Biology

Vδ2+ T cells play a critical role in immunity to micro-organisms and cancer but exhibit substantial heterogeneity in humans. Here, we demonstrate that CD26 and CD94 define transcriptionally, phenotypically, and functionally distinct Vδ2+ T cell subsets. Despite distinct antigen specificities, CD26hiCD94lo Vδ2+ cells exhibit substantial similarities to CD26hi mucosal-associated invariant T (MAIT) cells, although CD26- Vδ2+ cells exhibit cytotoxic, effector-like profiles. At birth, the Vδ2+Vγ9+ population is dominated by CD26hiCD94lo cells; during adolescence and adulthood, Vδ2+ cells acquire CD94/NKG2A expression and the relative frequency of the CD26hiCD94lo subset declines. Critically, exposure of the CD26hiCD94lo subset to phosphoantigen in the context of interleukin-23 (IL-23) and CD26 engagement drives the acquisition of a cytotoxic program and concurrent loss of the MAIT cell-like phenotype. The ability to modulate the cytotoxic potential of CD26hiCD94lo Vδ2+ cells, combined with their adenosine-binding capacity, may make them ideal targets for immunotherapeutic expansion and adoptive transfer.
Crown Copyright © 2020. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology
View this product on CiteAb