Product Citations: 62

IDH status dictates oHSV mediated metabolic reprogramming affecting anti-tumor immunity.

In Nature Communications on 24 April 2025 by Sahu, U., Mullarkey, M. P., et al.

Identification of isocitrate dehydrogenase (IDH) mutations has uncovered the crucial role of metabolism in gliomagenesis. Oncolytic herpes virus (oHSV) initiates direct tumor debulking by tumor lysis and activates anti-tumor immunity, however, little is known about the role of glioma metabolism in determining oHSV efficacy. Here we identify that oHSV rewires central carbon metabolism increasing glucose utilization towards oxidative phosphorylation and shuttling glutamine towards reductive carboxylation in IDH wildtype glioma. The switch in metabolism results in increased lipid synthesis and cellular ROS. PKC induces ACSL4 in oHSV treated cells leading to lipid peroxidation and ferroptosis. Ferroptosis is critical to launch an anti-tumor immune response which is important for viral efficacy. Mutant IDH (IDHR132H) gliomas are incapable of reductive carboxylation and hence ferroptosis. Pharmacological blockade of IDHR132H induces ferroptosis and anti-tumor immunity. This study provides a rationale to use an IDHR132H inhibitor to treat high grade IDH-mutant glioma patients undergoing oHSV treatment.
© 2025. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cancer Research
  • Cell Biology
  • Immunology and Microbiology

Rab8a restores diverse innate functions in CD11c+CD11b+ dendritic cells from aged mice.

In Nature Communications on 27 November 2024 by Singh, S., Tehseen, A., et al.

Age-related alterations of the immune system compromise the host's ability to respond to pathogens, but how immune aging is regulated is still poorly understood. Here, we identify via transcriptomic analysis of splenic DCs and bone marrow derived dendritic cells (BMDC) of young and aged mice, the small GTPase Rab8a as a regulator of dendritic cell (DC) functions in mice. CD11c+CD11b+ DCs of aged in comparison to young host exhibit a diminished type I IFN response upon viral stimulation and inefficiently present exogenous antigens to CD8+ T cells in vitro and in vivo. Rab8a overexpression, which is accompanied by the upregulation of Rab11, restores the functionality of these aged DCs, whereas knockdown of Rab8a reduces functionality of DCs from young mice. Mechanistically, Rab8a and Rab11 cooperate to induce efficient trafficking of peptide loaded class I MHC molecules from the ER to the cell surface. We propose that targeting Rab8a might serve as a strategy to restore DC functionality in the context of immune aging.
© 2024. The Author(s).

  • Immunology and Microbiology

Synergistic Effects of PARP Inhibition and Cholesterol Biosynthesis Pathway Modulation.

In Cancer Res Commun on 1 September 2024 by Rutkowska, A., Eberl, H. C., et al.

An in-depth multiomic molecular characterization of PARP inhibitors revealed a distinct poly-pharmacology of niraparib (Zejula) mediated by its interaction with lanosterol synthase (LSS), which is not observed with other PARP inhibitors. Niraparib, in a similar way to the LSS inhibitor Ro-48-8071, induced activation of the 24,25-epoxysterol shunt pathway, which is a regulatory signaling branch of the cholesterol biosynthesis pathway. Interestingly, the combination of an LSS inhibitor with a PARP inhibitor that does not bind to LSS, such as olaparib, had an additive effect on killing cancer cells to levels comparable with niraparib as a single agent. In addition, the combination of PARP inhibitors and statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an enzyme catalyzing the rate-limiting step in the mevalonate pathway, had a synergistic effect on tumor cell killing in cell lines and patient-derived ovarian tumor organoids. These observations suggest that concomitant inhibition of the cholesterol biosynthesis pathway and PARP activity might result in stronger efficacy of these inhibitors against tumor types highly dependent on cholesterol metabolism.
The presented data indicate, to our knowledge, for the first time, the potential benefit of concomitant modulation of cholesterol biosynthesis pathway and PARP inhibition and highlight the need for further investigation to assess its translational relevance.
©2024 The Authors; Published by the American Association for Cancer Research.

Enhanced anti-tumor effects through continuous administration of engineered CAR-macrophages derived from pluripotent stem cell-derived myeloid cell lines

Preprint on BioRxiv : the Preprint Server for Biology on 23 July 2024 by Atsumi, Y., Niwa, A., et al.

Even after chimeric antigen receptor (CAR)-based immunotherapy has dramatically changed therapeutic approaches for malignancies, balancing therapeutic efficacy with labor and financial cost remains a major problem for immunotherapy. Current study developed a cost-effective and enhanced approach to chimeric antigen receptor (CAR)-macrophage therapy for cancer and demonstrated its therapeutic effects by repeated administration of anti-HER2 CAR macrophages generated from human pluripotent stem cell (PSC)-derived immortalized myeloid cell lines (ML). These ML-derived CAR macrophages (CAR-ML-MPs) exhibit potent antigen-specific killing activity against HER2-expressing tumor cells by phagocytosis in vitro and effectively inhibit tumor progression in vivo , which is enhanced by repeated administration. CAR-ML-MPs provide a promising off-the-shelf cellular resource for tumor adoptive cell immunotherapy, solving the cost and time problems associated with conventional CAR-based immunotherapy.

  • FC/FACS
  • Cancer Research
  • Stem Cells and Developmental Biology

Characterising plasmacytoid and myeloid AXL+ SIGLEC-6+ dendritic cell functions and their interactions with HIV.

In PLoS Pathogens on 1 June 2024 by Warner van Dijk, F. A., Tong, O., et al.

AXL+ Siglec-6+ dendritic cells (ASDC) are novel myeloid DCs which can be subdivided into CD11c+ and CD123+ expressing subsets. We showed for the first time that these two ASDC subsets are present in inflamed human anogenital tissues where HIV transmission occurs. Their presence in inflamed tissues was supported by single cell RNA analysis of public databases of such tissues including psoriasis diseased skin and colorectal cancer. Almost all previous studies have examined ASDCs as a combined population. Our data revealed that the two ASDC subsets differ markedly in their functions when compared with each other and to pDCs. Relative to their cell functions, both subsets of blood ASDCs but not pDCs expressed co-stimulatory and maturation markers which were more prevalent on CD11c+ ASDCs, thus inducing more T cell proliferation and activation than their CD123+ counterparts. There was also a significant polarisation of naïve T cells by both ASDC subsets toward Th2, Th9, Th22, Th17 and Treg but less toward a Th1 phenotype. Furthermore, we investigated the expression of chemokine receptors that facilitate ASDCs and pDCs migration from blood to inflamed tissues, their HIV binding receptors, and their interactions with HIV and CD4 T cells. For HIV infection, within 2 hours of HIV exposure, CD11c+ ASDCs showed a trend in more viral transfer to T cells than CD123+ ASDCs and pDCs for first phase transfer. However, for second phase transfer, CD123+ ASDCs showed a trend in transferring more HIV than CD11c+ ASDCs and there was no viral transfer from pDCs. As anogenital inflammation is a prerequisite for HIV transmission, strategies to inhibit ASDC recruitment into inflamed tissues and their ability to transmit HIV to CD4 T cells should be considered.
Copyright: © 2024 Warner van Dijk et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb