Product Citations: 3

Stimulation of TNF receptor type 2 expands regulatory T cells and ameliorates established collagen-induced arthritis in mice.

In Cellular Molecular Immunology on 1 January 2019 by Lamontain, V., Schmid, T., et al.

Tumor necrosis factor (TNF) and its receptors TNF receptor type 1 (TNFR1) and type 2 (TNFR2) have a central role in chronic inflammatory diseases. While TNFR1 mainly confers inflammation, activation of TNFR2 elicits not only pro-inflammatory but also anti-inflammatory effects. In this study, we wanted to investigate the anti-inflammatory therapeutic potential of selective activation of TNFR2 in mice with established collagen-induced arthritis. Mice with established arthritis induced by immunization with bovine collagen type II were treated with six injections of the TNFR2-specific agonist TNCscTNF80, given every second day. Two days after treatment cessation, the cell compositions of bone marrow, spleen and lymph nodes were analyzed. Mice were visually scored until day 30 after the start of therapy and the degree of joint inflammation was determined by histology. Treatment with TNCscTNF80 increased arthritis-induced myelopoiesis. Little effect was seen on the infiltration rate of inflammatory immature myeloid cells and on the reduction of lymphoid cells in secondary lymphoid organs. Upon treatment, frequency of regulatory T (Treg) cells in the CD4+ T-cell population was increased in both spleen and inguinal lymph nodes. In addition, the expression of TNFR2 on Treg cells was enhanced. The clinical score started to improve 1 week after cessation treatment and remained lower 30 days after initiation of therapy. The histological score also revealed amelioration of joint inflammation in TNCscTNF80-treated versus control mice. Activation of TNFR2 might provide a suitable therapeutic strategy in autoimmune arthritis by increasing the numbers of regulatory cell types, in particular Treg cells, and by attenuation of arthritis.

  • Immunology and Microbiology

Clock gene modulation by TNF-alpha depends on calcium and p38 MAP kinase signaling.

In Journal of Biological Rhythms on 1 August 2009 by Petrzilka, S., Taraborrelli, C., et al.

A 24-h treatment with the cytokine tumor necrosis factor-alpha (TNF-alpha) suppresses transcription of E-box-driven clock genes (D-site albumin promoter binding protein, Dbp; Tyrotroph embryonic factor, Tef ; Hepatic leukemia factor, Hlf; Period homolog to Drosophila 1/2/3, Per1, Per2, and Per3) by yet unknown molecular mechanisms. The attenuation of clock genes has been suggested as a putative cause for the development of sickness behavior syndrome in infectious and autoimmune diseases. Here, the authors studied the effect of TNF-alpha at early time points (<3 h) on intracellular signaling events and clock gene expression in fibroblasts. Interaction of TNF-alpha with TNFR1 (Tnfrsf1a , CD120a, p55), but not TNFR2 (Tnfrsf1b, CD120b , p75), leads to fast downregulation of gene expression of Dbp and upregulation of negative regulators of the molecular clock, Per1 and Per2, Cryptochrome-1 (Cry1), and Differentiated embryo chondrocytes-1 (Dec1). Since the decrease of Dbp is also observed in cells deficient for Per1/Per2, Cry1/Cry2 , or Dec1, these genes are unlikely to be responsible for inhibition of Dbp. The early effect of TNF-alpha on the clock gene Per1 is dependent on p38, mitogen-activated protein kinase (MAPK), and/or calcium signaling, whereas the effect on Dbp is independent of p38 MAPK, but also involves calcium signaling. Both genes remain unaffected by the NF-kappaB and AP-1 pathway. Taken collectively these data show p38 MAPK- and calcium-dependent TNFR1-mediated transient increase of the negative regulator Per1 and an independent decrease of Dbp.

Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17.

In Journal of Leukocyte Biology on 1 May 2007 by Nakae, S., Iwakura, Y., et al.

Recent evidence from several groups indicates that IL-17-producing Th17 cells, rather than, as once was thought, IFN-gamma-producing Th1 cells, can represent the key effector cells in the induction/development of several autoimmune and allergic disorders. Although Th17 cells exhibit certain phenotypic and developmental differences from Th1 cells, the extent of the differences between these two T cell subsets is still not fully understood. We found that the expression profile of cell surface molecules on Th17 cells has more similarities to that of Th1 cells than Th2 cells. However, although certain Th1-lineage markers [i.e., IL-18 receptor alpha, CXCR3, and T cell Ig domain, mucin-like domain-3 (TIM-3)], but not Th2-lineage markers (i.e., T1/ST2, TIM-1, and TIM-2), were expressed on Th17 cells, the intensity of expression was different between Th17 and Th1 cells. Moreover, the expression of CTLA-1, ICOS, programmed death ligand 1, CD153, Fas, and TNF-related activation-induced cytokine was greater on Th17 cells than on Th1 cells. We found that IL-23 or IL-17 can suppress Th1 cell differentiation in the presence of exogenous IL-12 in vitro. We also confirmed that IL-12 or IFN-gamma can negatively regulate Th17 cell differentiation. However, these cytokines could not modulate such effects on T cell differentiation in the absence of APC.

  • Immunology and Microbiology
View this product on CiteAb