Product Citations: 26

Human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin stalk of group 1 influenza A viruses (IAVs) are biased for IGHV1-69 alleles that use phenylalanine (F54) but not leucine (L54) within their CDRH2 loops. Despite this, we demonstrated that both alleles encode for human IAV bnAbs that employ structurally convergent modes of contact to the same epitope. To resolve differences in lineage expandability, we compared F54 versus L54 as substrate within humanized mice, where antibodies develop with human-like CDRH3 diversity but are restricted to single VH genes. While both alleles encoded for bnAb precursors, only F54 IGHV1-69 supported elicitation of heterosubtypic serum bnAbs following immunization with a stalk-only nanoparticle vaccine. L54 IGHV1-69 was unproductive, co-encoding for anergic B cells and autoreactive stalk antibodies that were cleared from B cell memory. Moreover, human stalk antibodies also demonstrated L54-dependent autoreactivity. Therefore, IGHV1-69 polymorphism, which is skewed ethnically, gates tolerance and vaccine expandability of influenza bnAbs.
Copyright © 2022 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

GDF15 Suppresses Lymphoproliferation and Humoral Autoimmunity in a Murine Model of Systemic Lupus Erythematosus.

In Journal of Innate Immunity on 21 April 2022 by Lorenz, G., Ribeiro, A., et al.

Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-β superfamily, has been associated with acute and chronic inflammatory conditions including autoimmune disease, i.e., type I diabetes and rheumatoid arthritis. Still, its role in systemic autoimmune disease remains elusive. Thus, we studied GDF15-deficient animals in Fas-receptor intact (C57BL/6) or deficient (C57BL/6lpr/lpr) backgrounds. Further, lupus nephritis (LN) microdissected kidney biopsy specimens were analyzed to assess the involvement of GDF15 in human disease. GDF15-deficiency in lupus-prone mice promoted lymphoproliferation, T-, B- and plasma cell-expansion, a type I interferon signature, and increased serum levels of anti-DNA autoantibodies. Accelerated systemic inflammation was found in association with a relatively mild renal phenotype. Splenocytes of phenotypically overall-normal Gdf15-/- C57BL/6 and lupus-prone C57BL/6lpr/lpr mice displayed increased in vitro lymphoproliferative responses or interferon-dependent transcription factor induction in response to the toll-like-receptor (TLR)-9 ligand CpG, or the TLR-7 ligand Imiquimod, respectively. In human LN, GDF15 expression was downregulated whereas type I interferon expression was upregulated in glomerular- and tubular-compartments versus living donor controls. These findings demonstrate that GDF15 regulates lupus-like autoimmunity by suppressing lymphocyte-proliferation and -activation. Further, the data indicate a negative regulatory role for GDF15 on TLR-7 and -9 driven type I interferon signaling in effector cells of the innate immune system.
© 2022 The Author(s). Published by S. Karger AG, Basel.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Targeting the liver X receptor with dendrogenin A differentiates tumour cells to secrete immunogenic exosome-enriched vesicles.

In Journal of Extracellular Vesicles on 1 April 2022 by Record, M., Attia, M., et al.

Tumour cells are characterized by having lost their differentiation state. They constitutively secrete small extracellular vesicles (sEV) called exosomes when they come from late endosomes. Dendrogenin A (DDA) is an endogenous tumour suppressor cholesterol-derived metabolite. It is a new class of ligand of the nuclear Liver X receptors (LXR) which regulate cholesterol homeostasis and immunity. We hypothesized that DDA, which induces tumour cell differentiation, inhibition of tumour growth and immune cell infiltration into tumours, could functionally modify sEV secreted by tumour cells. Here, we have shown that DDA differentiates tumour cells by acting on the LXRβ. This results in an increased production of sEV (DDA-sEV) which includes exosomes. The DDA-sEV secreted from DDA-treated cells were characterized for their content and activity in comparison to sEV secreted from control cells (C-sEV). DDA-sEV were enriched, relatively to C-sEV, in several proteins and lipids such as differentiation antigens, "eat-me" signals, lipidated LC3 and the endosomal phospholipid bis(monoacylglycero)phosphate, which stimulates dendritic cell maturation and a Th1 T lymphocyte polarization. Moreover, DDA-sEV inhibited the growth of tumours implanted into immunocompetent mice compared to control conditions. This study reveals a pharmacological control through a nuclear receptor of exosome-enriched tumour sEV secretion, composition and immune function. Targeting the LXR may be a novel way to reprogram tumour cells and sEV to stimulate immunity against cancer.
© 2022 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.

  • Cancer Research

Monoallelic AgR gene expression underlies specific adaptive immune responses. AgR allelic exclusion is achieved by sequential initiation of V(D)J recombination between alleles and resultant protein from one allele signaling to prevent recombination of the other. The ATM kinase, a regulator of the DNA double-strand break (DSB) response, helps enforce allelic exclusion through undetermined mechanisms. ATM promotes repair of RAG1/RAG2 (RAG) endonuclease-induced DSBs and transduces signals from RAG DSBs during Igk gene rearrangement on one allele to transiently inhibit RAG1 protein expression, Igk accessibility, and RAG cleavage of the other allele. Yet, the relative contributions of ATM functions in DSB repair versus signaling to enforce AgR allelic exclusion remain undetermined. In this study, we demonstrate that inactivation in mouse pre-B cells of the NF-κB essential modulator (Nemo) protein, an effector of ATM signaling, diminishes RAG DSB-triggered repression of Rag1/Rag2 transcription and Igk accessibility but does not result in aberrant repair of RAG DSBs like ATM inactivation. We show that Nemo deficiency increases simultaneous biallelic Igk cleavage in pre-B cells and raises the frequency of B cells expressing Igκ proteins from both alleles. In contrast, the incidence of biallelic Igκ expression is not elevated by inactivation of the SpiC transcriptional repressor, which is induced by RAG DSBs in an ATM-dependent manner and suppresses Igk accessibility. Thus, we conclude that Nemo-dependent, ATM-mediated DNA damage signals enforce Igκ allelic exclusion by orchestrating transient repression of RAG expression and feedback inhibition of additional Igk rearrangements in response to RAG cleavage on one Igk allele.
Copyright © 2022 by The American Association of Immunologists, Inc.

  • FC/FACS
  • Genetics
  • Immunology and Microbiology

The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination.

In The Journal of Experimental Medicine on 4 October 2021 by Beilinson, H. A., Glynn, R. A., et al.

Immunoglobulin and T cell receptor gene assembly depends on V(D)J recombination initiated by the RAG1-RAG2 recombinase. The RAG1 N-terminal region (NTR; aa 1-383) has been implicated in regulatory functions whose influence on V(D)J recombination and lymphocyte development in vivo is poorly understood. We generated mice in which RAG1 lacks ubiquitin ligase activity (P326G), the major site of autoubiquitination (K233R), or its first 215 residues (Δ215). While few abnormalities were detected in R1.K233R mice, R1.P326G mice exhibit multiple features indicative of reduced recombination efficiency, including an increased Igκ+:Igλ+ B cell ratio and decreased recombination of Igh, Igκ, Igλ, and Tcrb loci. Previous studies indicate that synapsis of recombining partners during Igh recombination occurs through two pathways: long-range scanning and short-range collision. We find that R1Δ215 mice exhibit reduced short-range Igh and Tcrb D-to-J recombination. Our findings indicate that the RAG1 NTR regulates V(D)J recombination and lymphocyte development by multiple pathways, including control of the balance between short- and long-range recombination.
© 2021 Beilinson et al.

  • FC/FACS
View this product on CiteAb