Product Citations: 21

Infection of pigs with the African swine fever virus (ASFV) leads to a devastating hemorrhagic disease with a high mortality of up to 100%. In this study, a CD2v gene deletion was introduced to a genotype IX virus from East Africa, ASFV-Kenya-IX-1033 (ASFV-Kenya-IX-1033-∆CD2v), to investigate whether this deletion led to reduced virulence in domestic pigs and to see if inoculation with this LA-ASFV could induce protective immunity against parental virus challenge. All pigs inoculated with ASFV-Kenya-IX-1033-ΔCD2v survived inoculation but presented with fever, reduced appetite and lethargy. ASFV genomic copies were detected in only one animal at one time point. Seven out of eight animals survived subsequent challenge with the pathogenic parental strain (87.5%) but had mild to moderate clinical symptoms and had a gross pathology compatible with chronic ASFV infection. All mock-immunised animals developed acute ASF upon challenge with ASFV-Kenya-IX-1033 and were euthanised upon meeting the humane endpoint criteria. ASFV genome copy numbers after challenge were similar in the two groups. ASFV-Kenya-IX-1033-∆CD2v is therefore a useful tool to investigate the development of immunity to ASFV genotype IX, but safety concerns preclude its use as a candidate vaccine without further attenuation.

  • Sus scrofa domesticus (Domestic pig)
  • Veterinary Research

The purpose of this study was to compare the immune response generated by the intramuscular and the intradermal vaccination route against the porcine reproductive and respiratory syndrome virus (PRRSV). Piglets from a seronegative and a seropositive farm were selected (n = 28 piglets per farm), and each group was divided into two groups and vaccinated at weaning with modified live vaccine Unistrain® PRRS (Laboratorios Hipra Amer, Spain) by the intramuscular or the intradermic route. For the following 6 weeks, animals were weekly bled to assess the humoral response by PRRSV-specific antibody ELISA and viral neutralisation test. At 0-, 3-, 4- and 6 weeks post-vaccination, peripheral mononuclear blood cells (PBMC) from eight animals per group were recovered to analyse cellular response by IFN-γ ELISPOT and lymphoproliferation. Serum IL-12 was also quantified by ELISA. Results showed no significant differences between treatments for any of the parameters studied. However, pigs from the seronegative origin had higher dispersion in S/P ratios by ELISA (Levene’s test for homogeneity of variances, p  0.05). At 3 weeks after vaccination, 6/27 (22.22%) animals from negative origin had not seroconverted. Also, it was 10 times more probable for them to have high levels of IL-12 a week after vaccination than for animals of seropositive origin. These results indicate that the intradermal route induces an immune response equivalent to the classical intramuscular route even in presence of maternal immunity, which in this study has proven to facilitate seroconversion after vaccination.

  • Immunology and Microbiology
  • Veterinary Research

Impact of Cryopreservation on Viability, Phenotype, and Functionality of Porcine PBMC.

In Frontiers in Immunology on 17 December 2021 by Li, Y., Mateu, E., et al.

The use of frozen peripheral blood mononuclear cells (PBMC) is common in immunological studies. The impact of freezing PBMC has been assessed using human and mice cells, but little information is available regarding domestic animals. In the present study, the phenotype and functionality of frozen porcine PBMC were examined. In a preliminary experiment, three freezing media: fetal bovine serum plus 10% dimethyl sulfoxide, PSC cryopreservation kit, and Cryostor CS10, were compared regarding the preservation of cell viability and the response of PBMC to mitogens after thawing. After being stored one month in liquid nitrogen, cell viability was above 89% for all freezing media. The ELISPOT IFN-gamma (IFN-γ) results in response to PHA and of IgG ELISPOT in response to R848+IL-2 were similar to those obtained using fresh PBMC. In the second set of experiments, PBMC were obtained from five pigs vaccinated against Porcine reproductive and respiratory syndrome virus (PRRSV) and then frozen using Cryostor CS10. Recovered cells were phenotyped by flow cytometry using anti-CD3, CD4, CD8, and CD21 antibodies and were used to assess the PRRSV-specific responses in a proliferation experiment, an IFN-γ ELISPOT, and an IgG ELISPOT, and compared to the results obtained with fresh cells. The antigen-specific responses of frozen cells were significantly (p<0.05) impaired in the proliferation assay, particularly for CD4/CD8 double-positive T-cells and for CD21+ cells. Freezing resulted in decreased proliferation when Con A, but not PHA, was used. In ELISPOT, cryopreservation resulted in a decreased frequency of IFN-γ-secreting cells in response to PRRSV (p<0.05) but the response to PHA was not affected. No differences were observed in the IgG ELISPOT after polyclonal activation. Taken together, cryopreservation of porcine PBMC had a significant impact on the magnitude of recall antigen responses and therefore, it may affect the response of effector/memory cells but seems not to have a major impact on naïve T-cells. These results may help to the better use of frozen porcine PBMC, and to the interpretation of the results obtained from them.
Copyright © 2021 Li, Mateu and Díaz.

  • Immunology and Microbiology
  • Veterinary Research

Göttingen Minipigs as a Model to Evaluate Longevity, Functionality, and Memory of Immune Response Induced by Pertussis Vaccines.

In Frontiers in Immunology on 6 April 2021 by Vaure, C., Grégoire-Barou, V., et al.

Evaluation of the short-term and long-term immunological responses in a preclinical model that simulates the targeted age population with a relevant vaccination schedule is essential for human vaccine development. A Göttingen minipig model was assessed, using pertussis vaccines, to demonstrate that vaccine antigen-specific humoral and cellular responses, including IgG titers, functional antibodies, Th polarization and memory B cells can be assessed in a longitudinal study. A vaccination schedule of priming with a whole cell (DTwP) or an acellular (DTaP) pertussis vaccine was applied in neonatal and infant minipigs followed by boosting with a Tdap acellular vaccine. Single cell RNAsequencing was used to explore the long-term maintenance of immune memory cells and their functionality for the first time in this animal model. DTaP but not DTwP vaccination induced pertussis toxin (PT) neutralizing antibodies. The cellular immune response was also characterized by a distinct Th polarization, with a Th-2-biased response for DTaP and a Th-1/Th-17-biased response for DTwP. No difference in the maintenance of pertussis-specific memory B cells was observed in DTaP- or DTwP-primed animals 6 months post Tdap boost. However, an increase in pertussis-specific T cells was still observed in DTaP primed minipigs, together with up-regulation of genes involved in antigen presentation and interferon pathways. Overall, the minipig model reproduced the humoral and cellular immune responses induced in humans by DTwP vs. DTaP priming, followed by Tdap boosting. Our data suggest that the Göttingen minipig is an attractive preclinical model to predict the long-term immunogenicity of human vaccines against Bordetella pertussis and potentially also vaccines against other pathogens.
Copyright © 2021 Vaure, Grégoire-Barou, Courtois, Chautard, Dégletagne and Liu.

  • Immunology and Microbiology

Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe respiratory distress and reproductive failure in swine. Modified live virus (MLV) vaccines provide the highest degree of protection and are most often the preferred choice. While somewhat protective, the use of MLVs is accompanied by multiple safety issues, why safer alternatives are urgently needed. Here, we describe the generation of virus replicon particles (VRPs) based on a classical swine fever virus genome incapable of producing infectious progeny and designed to express conserved PRRSV-2 cytotoxic T-cell epitopes. Eighteen pigs matched with the epitopes by their swine leucocyte antigen-profiles were vaccinated (N = 11, test group) or sham-vaccinated (N = 7, control group) with the VRPs and subsequently challenged with PRRSV-2. The responses to vaccination and challenge were monitored using serological, immunological, and virological analyses. Challenge virus load in serum did not differ significantly between the groups, whereas the virus load in the caudal part of the lung was significantly lower in the test group compared to the control group. The number of peptide-induced interferon-γ secreting cells after challenge was higher and more frequent in the test group than in the control group. Together, our results provide indications of a shapeable PRRSV-specific cell-mediated immune response that may inspire future development of effective PRRSV vaccines.

  • Immunology and Microbiology
  • Veterinary Research
View this product on CiteAb