Product Citations: 24

The MITO-END3 trial compared carboplatin and paclitaxel (CP) with avelumab plus carboplatin and paclitaxel (CPA) as first-line treatment in endometrial cancer (EC) patients and demonstrated a significant interaction between avelumab response and mismatch repair status. To investigate prognostic/predictive biomarker, 29 MITO-END3-EC patients were evaluated at pretreatment (B1) and at the end of CP/CPA treatment (B2) for peripheral myeloid-derived suppressor cells (MDSC) and Tregs. At B2, effector Tregs frequency was significantly higher in patients treated with CPA as compared to CP (p = 0.038). Both treatments (CP/CPA) induced significant decrease in peripheral M-MDSC (- 5.41%) in TCGA 2-MSI-high as compared to TCGA-category 4 tumors (p = 0.004). In accordance, both treatments induced M-MDSCs (+ 5.34%) in MSS patients as compared to MSI-high patients (p = 0.001). Moreover, in a subgroup of patients, primary tumors were highly infiltrated by M-MDSCs in MSS as compared to MSI-high ECs. A post hoc analysis displayed higher frequency of M-MDSCs (p = 0.020) and lower frequency of CD4+ (p < 0.005) at pretreatment in EC patients as compared to healthy donors. In conclusion, the peripheral evaluation of MDSCs and Tregs correlated with molecular features in EC treated with CP/CPA and may add insights in identifying EC patients responder to first-line chemo/chemo-immunotherapy.
© 2025. The Author(s).

  • Cancer Research

Although ACVR2A mutations are prevalent in non-viral hepatocellular carcinomas (HCCs), the underlying mechanism remains unelucidated. Our molecular investigation reveals that ACVR2A impairment induces hyperglycolysis through the inactivation of the SMAD signaling pathway. Using syngeneic transplantation models and human clinical samples, we clarify that ACVR2A-deficient HCC cells produce and secrete lactate via the upregulation of lactate dehydrogenase A (LDHA) and monocarboxylate transporter 4 (MCT4) expression levels, which promotes regulatory T (Treg) cell accumulation and then acquires resistance to immune checkpoint inhibitors. Remarkably, genetic knockdown and pharmacological inhibition of MCT4 ameliorate the high-lactate milieu in ACVR2A-deficient HCC, resulting in the suppression of intratumoral Treg cell recruitment and the restoration of the sensitivity to PD-1 blockade. These findings furnish compelling evidence that lactate attenuates anti-tumor immunity and that therapeutics targeting this pathway present a promising strategy for mitigating immunotherapy resistance in ACVR2A-deficient HCC.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cancer Research

CKLF instigates a "cold" microenvironment to promote MYCN-mediated tumor aggressiveness.

In Science Advances on 15 March 2024 by Qin, X., Lam, A., et al.

Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.

  • Cancer Research

PRSS2 remodels the tumor microenvironment via repression of Tsp1 to stimulate tumor growth and progression.

In Nature Communications on 27 December 2022 by Sui, L., Wang, S., et al.

The progression of cancer from localized to metastatic disease is the primary cause of morbidity and mortality. The interplay between the tumor and its microenvironment is the key driver in this process of tumor progression. In order for tumors to progress and metastasize they must reprogram the cells that make up the microenvironment to promote tumor growth and suppress endogenous defense systems, such as the immune and inflammatory response. We have previously demonstrated that stimulation of Tsp-1 in the tumor microenvironment (TME) potently inhibits tumor growth and progression. Here, we identify a novel tumor-mediated mechanism that represses the expression of Tsp-1 in the TME via secretion of the serine protease PRSS2. We demonstrate that PRSS2 represses Tsp-1, not via its enzymatic activity, but by binding to low-density lipoprotein receptor-related protein 1 (LRP1). These findings describe a hitherto undescribed activity for PRSS2 through binding to LRP1 and represent a potential therapeutic strategy to treat cancer by blocking the PRSS2-mediated repression of Tsp-1. Based on the ability of PRSS2 to reprogram the tumor microenvironment, this discovery could lead to the development of therapeutic agents that are indication agnostic.
© 2022. The Author(s).

  • Cancer Research

Tregcells drive MYCN-mediated immunosuppression and tumor aggressiveness in high-risk neuroblastoma

Preprint on BioRxiv : the Preprint Server for Biology on 5 October 2022 by Qin, X., Lam, A., et al.

Solid tumors, especially those with aberrant MYCN activation, harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance 1,2 , yet the underlying mechanisms are elusive and effective strategies to tackle this challenge are lacking. Here we demonstrated the crucial role of T regulatory (T reg ) cells in MYCN-mediated immune repression and tumor aggression using high-risk neuroblastoma (NB) as a model system. Human MYCN-activated NB attracts CD4 + T reg cells, which are also found enriched in MYCN-high primary patient samples. Zebrafish MYCN -overexpressing neural crests recruit Cd4 + cells before tumor formation and induce an immunosuppressive microenvironment, thereby promoting tumor onset and progression. Strikingly, disruption of T reg cells through depletion of forkhead box protein 3a restores anti-tumor immunity and impairs NB development. Together, our studies establish T reg cells as the key driver of MYCN-mediated immunosuppression and tumor aggressiveness, providing mechanistic insights and therapeutic implications.

  • Cancer Research
View this product on CiteAb