Product Citations: 33

PPDPF is not a key regulator of human pancreas development.

In PLoS Genetics on 1 April 2025 by Breunig, M., Hohwieler, M., et al.

Given their capability to differentiate into each cell type of the human body, human pluripotent stem cells (hPSCs) provide a unique platform for developmental studies. In the current study, we employed this cell system to understand the role of pancreatic progenitor differentiation and proliferation factor (PPDPF), a protein that has been little explored so far. While the zebrafish orthologue exdpf is essential for exocrine pancreas specification, its importance for mammalian and human development has not been studied yet. We implemented a four times CRISPR/Cas9 nicking approach to knockout PPDPF in human embryonic stem cells (hESCs) and differentiated PPDPFKO/KO and PPDPFWT/WT cells towards the pancreatic lineage. In contrast to data obtained from zebrafish, a very modest effect of the knockout was observed in the development of pancreatic progenitors in vitro, not affecting lineage specification upon orthotopic transplantation in vivo. The modest effect is in line with the finding that genetic variants near PPDPF are associated with random glucose levels in humans, but not with type 2 diabetes risk, supporting that dysregulation of this gene may only result in minor alterations of glycaemic balance in humans. In addition, PPDPF is less organ- and cell type specifically expressed in higher vertebrates and its so far reported functions appear highly context-dependent.
Copyright: © 2025 Breunig et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics

Attenuating iPSC reprogramming stress with dominant-negative BET peptides.

In IScience on 20 January 2023 by Hossain, M. E., Cevallos, R. R., et al.

Generation of induced pluripotent stem cells (iPSCs) is inefficient and stochastic. The underlying causes for these deficiencies are elusive. Here, we showed that the reprogramming factors (OCT4, SOX2, and KLF4, collectively OSK) elicit dramatic reprogramming stress even without the pro-oncogene MYC including massive transcriptional turbulence, massive and random deregulation of stress-response genes, cell cycle impairment, downregulation of mitotic genes, illegitimate reprogramming, and cytotoxicity. The conserved dominant-negative (DN) peptides of the three ubiquitous human bromodomain and extraterminal (BET) proteins enhanced iPSC reprogramming and mitigated all the reprogramming stresses mentioned above. The concept of reprogramming stress developed here affords an alternative avenue to understanding and improving iPSC reprogramming. These DN BET fragments target a similar set of the genes as the BET chemical inhibitors do, indicating a distinct approach to targeting BET proteins.
© 2022 The Author(s).

  • Stem Cells and Developmental Biology

Cancer-derived iPSCs have provided valuable insight into oncogenesis, but human cancer cells can often be difficult to reprogram, especially in cases of complex genetic abnormalities. Here we report, to our knowledge, the first successful generation of an iPSC line from a human immortalized acute myeloid leukemia (AML) cell line, the cell line HL-60. This iPSC line retains a majority of the leukemic genotype and displays defects in myeloid differentiation, thus providing a tool for modeling and studying AML.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.

  • Homo sapiens (Human)
  • Cancer Research
  • Stem Cells and Developmental Biology

APDS2 is caused by mutations in PIK3R1 gene resulting in constitutive PI3Kδ activation. PI3Kδ is predominantly expressed in leukocytes and plays critical roles in regulating immune responses. Here we first derived fibroblast primary cells from a skin biopsy of a patient carrying a heterozygous single T deletion in intron 11 of the PIK3R1 gene. We next present the derivation of an induced pluripotent stem cell (iPS) line using a non-integrative reprogramming technology. Pluripotent-related hallmarks are further shown, including: iPSCs self-renewal and expression of pluripotent and differentiation markers after in vitro differentiation towards embryonic germ layers, assessed by RT-PCR and immunofluorescence.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.

  • Stem Cells and Developmental Biology

Evaluating Reprogramming Efficiency and Pluripotency of the Established Human iPSCS by Pluripotency Markers.

In Methods in Molecular Biology (Clifton, N.J.) on 24 November 2020 by Cevallos, R. R., Hossain, M. E., et al.

The pluripotency of human induced pluripotent stem cells (HiPSCs) cannot be tested strictly in a similar way as we can do for the mouse ones because of ethical restrictions. One common and initial approach to prove the pluripotency of an established human iPSC line is to demonstrate expression of a set of established surface and intracellular pluripotency markers. This chapter provides procedures of immunocytochemistry of the established HiPSC lines for a set of the signature intracellular pluripotency proteins, OCT4, SOX2, NANOG, and LIN28. We also describe cell phenotyping by flow cytometry for the five established human pluripotency surface markers, SSEA3, SSEA4, TRA-1-60, TRA-1-81, and TRA2-49 (ALP). Numbers of ALP+ and TRA-1-60+ colonies are the most widely used parameters for evaluation of human iPSC reprogramming efficiency. Therefore, this chapter also provides detailed steps for substrate colorimetric reaction of the ALP activity, as well as the TRA-1-60 staining, of the iPSC colonies in the reprogramming population.

  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology
View this product on CiteAb