Product Citations: 44

Enhanced HIV immune responses elicited by an apoptotic single-cycle SHIV lentivector DNA vaccine.

In Frontiers in Cellular and Infection Microbiology on 28 April 2025 by Bose, D., Rogers, K. A., et al.

HIV remains a major public health issue in spite of antiretroviral therapy (ART). An innovative vaccine that can induce long-lasting and effective immunity is required to curb the persistently high numbers of new infections worldwide.
A novel DNA vaccine was generated using a Simian-Human Immunodeficiency Virus (SHIV) backbone with a Zambian T/F clade C envelope and under the control of the caprine arthritis encephalitis virus long terminal repeats (LTRs) for constitutive expression. Due to the deleted integrase, this DNA vaccine "CSH-DIN-T/F Z331" performs only a single replication cycle. To increase immunogenicity, the co-expression of apoptotic genes (BAX, BAK, or caspase 8) incorporated at the end of Pol was tested to promote the release of apoptotic bodies taken up by dendritic cells leading to cross-presentation of antigen. The three vaccines (CSH-DIN-T/F Z331-BAX, CSH-DIN-T/F Z331-BAK, and CSH-DIN-T/F Z331-Cas8) were tested in vitro for expression and in vivo in BALB/cJ mice for immunogenicity.
Transduced HEK293 cells co-cultured with CEMx174 confirmed the single replication cycle of the DNA vaccine and the induction of apoptosis by CSH-DIN-T/F Z331-Cas8 based on Annexin V expression. BALB/cJ mice were immunized with a combined intramuscular + intradermal/electroporation approach. Intracellular cytokine staining (ICS) from splenocytes collected 12 weeks post-prime/6 weeks post-boost demonstrated a clear superiority of caspase 8 expressing construct over the others, with higher proportions of IFN-γ-, IL-2-, and IL-21-producing CD8 T cells specific to Env, Gag, and Nef. The kinetics of immune response after various immunization schedules were also investigated.
This novel single-cycle DNA vaccine with apoptotic genes demonstrated an enhanced immunogenicity primarily for antigen-specific CD8+ T-cell responses.
Copyright © 2025 Bose, Rogers, Shirreff, Chebloune and Villinger.

  • Genetics
  • Immunology and Microbiology

Pancreatic islet transplantation (PITx) is a promising treatment option for patients with type 1 diabetes mellitus. Previously, we demonstrated that therapy with alloantigen-specific immunomodulatory cells (IMCs) generated ex vivo in the presence of anti-CD80 and CD86 monoclonal antibodies (mAbs), successfully induced tolerance following clinical liver transplantation. To extend IMC therapy to PITx, it is crucial to address the strong inflammatory and innate immune responses that occur immediately after PITx. In this study, we investigated the efficacy of IMCs in modulating macrophage activation and mitigating inflammatory damage of pancreatic islets. IMCs were induced using mouse splenocytes in the presence of anti-mouse anti-CD80 (RM80) and anti-CD86 (GL-1) mAbs. IMCs exerted donor-specific immunosuppressive effects in a mixed lymphocyte reaction. During lipopolysaccharide (LPS) stimulation, the addition of IMCs suppressed conversion to the M1 phenotype and promoted a shift toward the M2 phenotype, particularly under direct cell-cell contact conditions. Nitric oxide production, a hallmark of M1 polarized macrophages, was significantly reduced in LPS-stimulated RAW264 macrophages by IMC treatment. These findings were associated with reduced secretion of pro-inflammatory cytokines, tumoral necrosis factor α, and interleukin-6, and increased interleukin-10 production by macrophages. IMCs effectively prevented macrophage-mediated islet destruction after 12 h of co-culture with LPS-stimulated macrophages and significantly inhibited macrophage migration toward allogeneic islets in vitro. Intraportal co-infusion of IMCs with syngeneic islets in a mouse PITx model resulted in reduced messenger RNA (mRNA) expression of pro-inflammatory cytokines in the recipient liver. Immunohistochemical staining revealed a significantly lower number of F4/80+ macrophages at the transplantation site in IMCs-treated mice. These results demonstrate that IMCs modulate macrophage polarization, promoting a shift toward the M2 phenotype and protecting islets from macrophage-mediated damage. These effects combined with its intrinsic donor antigen-specific immunosuppressive capacity make IMC therapy a promising strategy for improving outcomes after PITx.

  • Immunology and Microbiology

Local administration of mRNA encoding cytokine cocktail confers potent anti-tumor immunity.

In Frontiers in Immunology on 18 September 2024 by Li, Z., Hu, L., et al.

Immunotherapy using inflammatory cytokines, such as interleukin (IL)-2 and interferon (IFN)-α, has been clinically validated in treating various cancers. However, systemic immunocytokine-based therapies are limited by the short half-life of recombinant proteins and severe dose-limiting toxicities. In this study, we exploited local immunotherapy by intratumoral administration of lipid nanoparticle (LNP)-encapsulated mRNA cocktail encoding cytokines IL-12, IL-7, and IFN-α. The cytokine mRNA cocktail induced tumor regression in multiple syngeneic mouse models and anti-tumor immune memory in one syngeneic mouse model. Additionally, immune checkpoint blockade further enhanced the anti-tumor efficacy of the cytokine mRNAs. Furthermore, human cytokine mRNAs exhibited robust anti-tumor efficacy in humanized mouse tumor models. Mechanistically, cytokine mRNAs induced tumor microenvironment inflammation, characterized by robust T cell infiltration and significant inflammatory cytokine and chemokine production.
Copyright © 2024 Li, Hu, Wang, Liu, Liu, Long, Li, Luo and Peng.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Genetics
  • Immunology and Microbiology

Aerobic exercise training (AET) has emerged as a strategy to reduce cancer mortality, however, the mechanisms explaining AET on tumor development remain unclear. Tumors escape immune detection by generating immunosuppressive microenvironments and impaired T cell function, which is associated with T cell mitochondrial loss. AET improves mitochondrial content and function, thus we tested whether AET would modulate mitochondrial metabolism in tumor-infiltrating lymphocytes (TIL). Balb/c mice were subjected to a treadmill AET protocol prior to CT26 colon carcinoma cells injection and until tumor harvest. Tissue hypoxia, TIL infiltration and effector function, and mitochondrial content, morphology and function were evaluated. AET reduced tumor growth, improved survival, and decreased tumor hypoxia. An increased CD8+ TIL infiltration, IFN-γ and ATP production promoted by AET was correlated with reduced mitochondrial loss in these cells. Collectively, AET decreases tumor growth partially by increasing CD8+ TIL effector function through an improvement in their mitochondrial content and function.
© 2024 The Authors.

  • Mus musculus (House mouse)
  • Cancer Research
  • Cell Biology
  • Immunology and Microbiology

Vaccination induces broadly neutralizing antibody precursors to HIV gp41.

In Nature Immunology on 1 June 2024 by Schiffner, T., Phung, I., et al.

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.
© 2024. The Author(s).

  • Immunology and Microbiology
View this product on CiteAb