Product Citations: 19

Drug and siRNA screens identify ROCK2 as a therapeutic target for ciliopathies.

In Commun Med (Lond) on 19 April 2025 by Smith, C. E. L., Streets, A. J., et al.

Primary cilia mediate vertebrate development and growth factor signalling. Defects in primary cilia cause inherited developmental conditions termed ciliopathies. Ciliopathies often present with cystic kidney disease, a major cause of early renal failure. Currently, only one drug, Tolvaptan, is licensed to slow the decline of renal function for the ciliopathy polycystic kidney disease. Novel therapeutic interventions are needed.
We screened clinical development compounds to identify those that reversed cilia loss due to siRNA knockdown. In parallel, we undertook a whole genome siRNA-based reverse genetics phenotypic screen to identify positive modulators of cilia formation.
Using a clinical development compound screen, we identify fasudil hydrochloride. Fasudil is a generic, off-patent drug that is a potent, broadly selective Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor. In parallel, the siRNA screen identifies ROCK2 and we demonstrate that ROCK2 is a key mediator of cilium formation and function through its possible effects on actin cytoskeleton remodelling.
Our results indicate that specific ROCK2 inhibitors (e.g. belumosudil) could be repurposed for cystic kidney disease treatment. We propose that ROCK2 inhibition represents a novel, disease-modifying therapeutic approach for heterogeneous ciliopathies.
© 2025. The Author(s).

  • Genetics

PU.1 (SPI1) is pivotal in hematopoiesis, yet its role in human endothelial-to-hematopoietic transition (EHT) remains unclear. Comparing human in vivo and in vitro EHT transcriptomes revealed SPI1's regulatory role. Knocking down SPI1 during in vitro EHT led to a decrease in the generation of hematopoietic progenitor cells (HPCs) and their differentiation potential. Through multi-omic analysis, we identified KLF1 and LYL1 - transcription factors specific to erythroid/myeloid and lymphoid cells, respectively - as downstream targets of SPI1. Overexpressing KLF1 or LYL1 partially rescues the SPI1 knockdown-induced reduction in HPC formation. Specifically, KLF1 overexpression restores myeloid lineage potential, while LYL1 overexpression re-establishes lymphoid lineage potential. We also observed a SPI1-LYL1 axis in the regulatory network in in vivo EHT. Taken together, our findings shed new light on the role of SPI1 in regulating lineage commitment during EHT, potentially contributing to the heterogeneity of hematopoietic stem cells (HSCs).
© 2024 The Author(s).

  • Stem Cells and Developmental Biology

Glycogen myophosphorylase loss causes increased dependence on glucose in iPSC-derived retinal pigment epithelium.

In The Journal of Biological Chemistry on 1 August 2024 by Basu, B., Karwatka, M., et al.

Loss of glycogen myophosphorylase (PYGM) expression results in an inability to break down muscle glycogen, leading to McArdle disease-an autosomal recessive metabolic disorder characterized by exercise intolerance and muscle cramps. While previously considered relatively benign, this condition has recently been associated with pattern dystrophy in the retina, accompanied by variable sight impairment, secondary to retinal pigment epithelial (RPE) cell involvement. However, the pathomechanism of this condition remains unclear. In this study, we generated a PYGM-null induced pluripotent stem cell line and differentiated it into mature RPE to examine structural and functional defects, along with metabolite release into apical and basal media. Mutant RPE exhibited normal photoreceptor outer segment phagocytosis but displayed elevated glycogen levels, reduced transepithelial resistance, and increased cytokine secretion across the epithelial layer compared to isogenic WT controls. Additionally, decreased expression of the visual cycle component, RDH11, encoding 11-cis-retinol dehydrogenase, was observed in PYGM-null RPE. While glycolytic flux and oxidative phosphorylation levels in PYGM-null RPE were near normal, the basal oxygen consumption rate was increased. Oxygen consumption rate in response to physiological levels of lactate was significantly greater in WT than PYGM-null RPE. Inefficient lactate utilization by mutant RPE resulted in higher glucose dependence and increased glucose uptake from the apical medium in the presence of lactate, suggesting a reduced capacity to spare glucose for photoreceptor use. Metabolic tracing confirmed slower 13C-lactate utilization by PYGM-null RPE. These findings have key implications for retinal health since they likely underlie the vision impairment in individuals with McArdle disease.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology

Noninvasive, label-free image approaches to predict multimodal molecular markers in pluripotency assessment.

In Scientific Reports on 9 July 2024 by Akiyoshi, R., Hase, T., et al.

Manufacturing regenerative medicine requires continuous monitoring of pluripotent cell culture and quality assessment while eliminating cell destruction and contaminants. In this study, we employed a novel method to monitor the pluripotency of stem cells through image analysis, avoiding the traditionally used invasive procedures. This approach employs machine learning algorithms to analyze stem cell images to predict the expression of pluripotency markers, such as OCT4 and NANOG, without physically interacting with or harming cells. We cultured induced pluripotent stem cells under various conditions to induce different pluripotent states and imaged the cells using bright-field microscopy. Pluripotency states of induced pluripotent stem cells were assessed using invasive methods, including qPCR, immunostaining, flow cytometry, and RNA sequencing. Unsupervised and semi-supervised learning models were applied to evaluate the results and accurately predict the pluripotency of the cells using only image analysis. Our approach directly links images to invasive assessment results, making the analysis of cell labeling and annotation of cells in images by experts dispensable. This core achievement not only contributes for safer and more reliable stem cell research but also opens new avenues for real-time monitoring and quality control in regenerative medicine manufacturing. Our research fills an important gap in the field by providing a viable, noninvasive alternative to traditional invasive methods for assessing pluripotency. This innovation is expected to make a significant contribution to improving regenerative medicine manufacturing because it will enable a more detailed and feasible understanding of cellular status during the manufacturing process.
© 2024. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

Biofabrication of synthetic human liver tissue with advanced programmable functions.

In IScience on 22 December 2022 by Florentino, R. M., Morita, K., et al.

Advances in cellular engineering, as well as gene, and cell therapy, may be used to produce human tissues with programmable genetically enhanced functions designed to model and/or treat specific diseases. Fabrication of synthetic human liver tissue with these programmable functions has not been described. By generating human iPSCs with target gene expression controlled by a guide RNA-directed CRISPR-Cas9 synergistic-activation-mediator, we produced synthetic human liver tissues with programmable functions. Such iPSCs were guide-RNA-treated to enhance expression of the clinically relevant CYP3A4 and UGT1A1 genes, and after hepatocyte-directed differentiation, cells demonstrated enhanced functions compared to those found in primary human hepatocytes. We then generated human liver tissue with these synthetic human iPSC-derived hepatocytes (iHeps) and other non-parenchymal cells demonstrating advanced programmable functions. Fabrication of synthetic human liver tissue with modifiable functional genetic programs may be a useful tool for drug discovery, investigating biology, and potentially creating bioengineered organs with specialized functions.
© 2022 The Authors.

  • Homo sapiens (Human)
View this product on CiteAb